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This  paper is about the word ‘now’. It is closely related to the 
article [2] by professor A. N. Prior. In that article Prior gives an 
extensive, and undoudbtedly correct analysis of the semantical 
function of the word ‘now’ in ordinary discourse. He then devel- 
ops a number of logical calculi which contain formal counter- 
parts of the word ‘now’, as well as of certain other temporal 
notions and the truth-functional connectives. In some of these 
calculi ‘now’ is formalized as a I-place propositional connective, 
while in others it is represented by a propositional constant. As I 
believe that ‘now’-like so many adverbs and adverbial clauses- 
should be regarded as a propositional modifier, I prefer the calculi 
of the first sort; and thus I will restrict my attention to  them. 

I will for these, and similar, calculi formulate the semantics, 
and then prove a number of metamathematical results about 
them. The most important of these results have the following 
form: Let C(N) be such a calculus, and let C be the calculus ob- 
tained by omitting the ’now’-operator from C(N). If an axiom 
system A for C is semantically complete then so is a closely to A 
related axiom system A’ for C(N). 

These results provide us with a number of different complete- 
ness theorems for some of the ‘now’-calculi considered, since for 
the corresponding calculi without the ‘now’-operator, many 
complete axiom systems are already available. 

For propositional calculi these results are quite easily obtained. 
For in these calculi the ‘now’-operator is, as it will turn out, 
always eliminable-i.e., every formula containing the operator 
is equivalent to a formula in which the operator does not occur. 
Thus, to obtain from a given axiom system A for the calculus 
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without ‘now’ a complete axiom system for the calculus with 
‘now’ it suffices to  add axioms which make it possible to  prove 
the equivalence between any formula and its ‘now’-free equivalent. 

In the predicate calculi which we will consider a formula con- 
taining ‘now’ is not always equivalent to  a formula without ‘now’. 
This fact is intuitively obvious, but nonetheless somewhat 
difficult to  show. A proof is given in the last section. Because not 
all formulae of our predicate calculi are equivalent t o  ‘now’-free 
formulae the completeness result has to  be proved by means 
other than those used for the propositional calculi. The results 
obtained are somewhat less general than those for the pro- 
positional cases. 

Before I proceed with the formal part of this paper I will, on 
the danger of repeating some of the points of Prior’s article, give a 
short informal discussion of the behaviour of ‘now’ in English. My 
reason for this is twofold. In the first place I hope that a few 
informal remarks will make it easier t o  understand the formal 
definitions of the semantics which will follow later. In the second 
place I want t o  make it clear-before I embark upon technical 
developments which otherwise might seem pointless-that the 
word ‘now’ is not vacuous, in the sense that whenever some- 
one makes a true, or false, statement by uttering a certain sen- 
tence in which the word ‘now’ occurs, he would also have made a 
true, or false, statement if he had uttered instead the sentence 
which is obtained if the word ‘now’ is omitted from the first 
sentence. 

Some people have indeed thought that ‘now’ is vacuous in this 
sense. If they had been right this paper should not have been 
written. But they are not. To see this let us consider an argument 
which is sometimes given in support of the view that ‘now’ is 
vacuous. I t  starts from the following observation: Suppose that 
I make a true statement by uttering a t  time t a certain sentence, 
e.g., the sentence ‘it is raining’. Then I would also have made a 
true statement if I had uttered at t the words ‘it is now raining’. 
Similarly, if the statement made by uttering the first sentence 
had been false, then so would have been the statement made by 
uttering the second sentence. This observation is certainly cor- 
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rect. And it remains correct if we replace the words ‘it is raining’ 
by any other English sentence in the present tense. But it is 
wrong to conclude from this that all occurrences of the word ‘now’ 
are vacuous. In fact, consider the sentences: 

(1) ’I learned last week that there would be an earthquake.’ 
(2) ‘I learned last week that there would now be an earth- 

Obviously there could be circumstances under which I would 
make a true statement if I uttered the first sentence, but a false 
one if I uttered the second. 

The function of the word ‘now’ in (2) is clearly to make the 
clause to which it applies-i.e., ‘there would be an earthquake’- 
refer to the moment of utterance of (2), and not to the moment, 
or moments, (indicated by other temporal modifiers that occur 
in the sentence) to which the clause would refer (as it does in (1)) 
if the word ‘now’ were absent. A little reflection shows that this 
principle correctly describes the function of the word ‘now’ in all 
of its occurrences. I t  explains in particular why the occurrence of 
‘now’ in ‘it is now raining’ is vacuous. For there the clause to 
which ‘now’ applies, viz., ‘it is raining’, is understood in any case 
to refer to the moment of utterance, whether ‘now’ be present 
or not. 

This establishes that the word ‘now’ does not always occur 
vacuously. However, we have also seen that an occurrence of 
‘now’ can be only non-vacuous if it occurs within the scope of 
another temporal modifier. Thus a formal analysis of ‘now’ will 
be of any interest only if it takes also other temporal operators 
into account. As a matter of fact the most interesting non-vacuous 
occurrences of ‘now’ are in sentences which contain besides such 
other temporal operators also propositional modifiers of a non- 
temporal character, e.g., modal, epistemic, or deontic operators. 
Sentence (l), in which the operator ‘I learn that’ occurs, is a case 
in point. 

In this paper I will nonetheless consider besides ‘now’ only 
operators of a purely temporal nature. The reason is mainly one of 
expedience: For those operators which I will consider a compre- 

quake.’ 
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hensive and satisfactory analysis has already been carried out, and 
we know a great deal about the systems to  which this analysis 
has led. I will make use of that information to  obtain the formal 
results which will follow. On the other hand relatively few formal 
systems are so far available in which temporal as well as non- 
temporal operators are represented. I believe, however, that the 
analysis given here will make the extension of such systems with 
a ‘now’-operator a straightforward matter once they will have 
been developed without ‘now’. 

My brief statement of the general function of the word ‘now’ 
may suggest that, even if the word is not vacuous, its semantical 
behaviour is too simple to justify a formal analysis. However, it 
turns out that a proper treatment of ‘now’ together with the 
other temporal operators which I will consider is not totally 
trivial, as the semantics developed earlier for these operators can 
not be extended in an entirely automatic manner so as to  cover 
‘now’. 

Nonetheless the reader may still have the feeling that the 
amount of attention paid to  the word ‘now’ in this paper is 
excessive. I will end this introduction with a few remarks aimed 
at dispelling that feeling. 

In the first place it should be observed that the feature which 
distinguishes ’now’ from those temporal modifiers which had 
already been satisfactorily treated previously is to  be found also 
in a number of other temporal concepts, e.g., in those expressed 
by the words ’today’, ‘yesterday’, ’last week‘, ‘next year’, etc., 
as well as, to  some extent, in the word ‘then’. Thus the analysis of 
‘now’ given here is also a paradigm for similar analyses of those 
other concepts. 

In the second place I want t o  point a t  a phenomenon which is 
connected with the use in English of the ordinary past and future 
tenses, but which, to  my knowledge, has so far been overlooked 
by tense logicians, and which is intimately related to  the analysis 
of ‘now’ given here. I have said repeatedly in this introduction 
that a satisfactory analysis already exists for a number of temporal 
notions. Among these notions are the past and future tenses. 
The past tense is in this analysis represented by a 1-place pro- 



FORMAL PROPERTIES OF ‘NOW’ 23 1 

positional operator P, which should be thought of as transforming, 
in particular, sentences in the present tense into the correspond- 
ing sentences in the past tense. Thus Pp’ can be read as ‘it was 
the case that p”, and, in particular, if p is, e.g., the sentence ’it 
rains’, as ‘it rained’. Similarly the future tense is represented by 
the 1-place operator F, so that Fp can be read as ‘it will be the case 
that p”. The semantics stipulates that a formula Pp’ is true at a 
moment t if and only if p’ is true at some moment preceding t; 
and that Fp is true at t if and only if p’ is true at some moment 
following t .  Thus, in particular, PFp is true a t  t if and only if there 
is a moment t’ before t such that p is true at some moment later 
than t’. Now compare the following two sentences: 

(3) ‘A child was born that would become ruler of the world.’ 
(4) ‘A child was born that will become ruler of the world.’ 

It is clear that while the first sentence would be true $.at some 
past time t a child was born to become ruler of the world at some 
time t’ later than t-whether that time t’ be before, identical 
with, or later than the present-the second sentence would be 
true only if the child is to  become ruler at a time later than the 
present. It follows that (3) can be correctly rendered in the 
following form: 

P(3x) (xis born A F(x is ruler of the world)). 

But for (4) no correct symbolization with the help of only P, F, 
and the apparatus of ordinary predicate logic is possib1e.l How- 
ever, if we have at our disposal also the ‘now’-operator N, (which 
will be introduced in Section 2), we can symbolize (4) properly as 

I of course exclude the possibility of symbolizing the sentence by means of 
explicit. quantification over moments. Such a symbolization of (2) would 
certainly be possible; and it would even make the operators P and F super- 
fluous. Such symbolizations, however, are a considerable departure from the 
actual form of the original sentences which they represent-which is unsatis- 
factory if we want t o  gain insight into the semantics of English. Moreover, one 
can object to symbolizations involving quantification over such abstract objects 
as moments, if these objects are not explicitly mentioned in the sentences 
that are to be symbolized. 
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P(3x) (x is born A NF(x is ruler of the world)). 

The semantics developed in Section 2 will indeed show that this 
symbolization is adequate. 

0 1. 

I will assume throughout this paper the existence of an infinite 
class & and a well-founded concatenation function C on &.2 & will 
be referred to as the set of expressions. S will be the class &-Range 
C; its members will be referred to as the symbols of &. Whenever 
el, e2 E &, we will write e1e2 instead of C ( (e , ,  e,)) .  

We assume that S contains symbols ( , ) (called parentheses); 
ql, q2 , . . . (called propositional constants); and for each n E o sym- 
bols C:, C;, C:, ... (called n-place connectives). We will refer to  
Ci, Ci, C?j, C:, Ci as N, -, G, H, A, respectively. 

By a language for propositional tense logic we understand a set 
consisting of the symbols ( , ), qi ( i  = 1, 2,.  . .) and some of the 
symbols C:. The formulae of a language C for propositional tense 
logic are defined by: 

DEFINITION 1. (i) qi is a formula of C; 
are formulae of C then C;(pl . . . yw) is a formula of C .  

(ii) if Cl E C and yl, . . . , pn 

I will always write ( ~ A w )  in stead of A(F y) .  Furthermore, (yvy) 
will stand for - ( - P A  my); (p + y )  will stand for ( - y v y ) ;  
(p t-) y )  will stand for (p -+ Y)A (y + p); Pp for -(H ( -)p))); 
and Fp for -(G ( -(y))) .  Parentheses will be omitted whenever no 
confusion is possible. In particular I will always write - y ,  Ny, 

2 By a well-founded concatenation function 3 on a dass S we understand a 
function from S x S into S, such that: 

(i) J(<J((si, 
(ii) if J((sl, s,)) = J((s,, s4)) then either (sl =s, and s, =s4) or there 

is an s E S such that s1 = J((s,, s)) and s, = 3((s, s,)) or there is an 
s E S such that s3 = 3((s1, s)) and s, = J((s, s4)); 

(iii) there is no infinite sequence so, sl, s,, . . . of elements of S such 
that for each n E w there is a t E S such that s, = 3(t, s,+~) or s, = 

s3)) = 3((si, 3((% ss))); 

3(sn+1, t ) .  
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Hp, Gp instead of -(p), N(p), H(p), G(p), respectively. The 
formulae Np, Hp, G p  are read as ‘it is now the case that p’, ‘it 
has always been the case that q’, and ‘it will always be the case 
that p’, respectively. 

T will always be a non-empty set and < a partial ordering (i. 
e., a transitive and asymmetric relation) on T. T will be the pair 
< T, < > . We think of T as the set of moments and of < as the 
earlier-later relation between them .3 The numbers 0 and 1 will be 
used as truth-values, 1 for truth and 0 for falsehood. 

Before turning to  the ’now’-calculus itself, I will first consider a 
simpler system, 6, the connectives of which are -, A, H, G. As 
the syntax of C, has already been defined, I will proceed a t  once 
with the semantics. 

I feel that this paper-which is concerned with the specific 
properties of ‘now’-is not the place where I should give an ex- 
tensive justification of the principles on which tense logic is 
based and which underlie in particular its semantics. Therefore 
I will restrict myself to  a few explanatory remarks to  make the 
following formal definitions more understandable. 

Tense logic belongs to  a type of logic in which is explicitly 
adopted a feature of natural languages that has no part in the 
standard systems of mathematical logic (as, e.g., the ordinary 
predicate calculus): In natural languages we can in many cases 
use the same linguistic form under different circumstances- 
and, in particular, a t  different times-to make different state- 
ments. So we may use the expression ‘it rains’ at one time to  
make a true statement and at another to make a false one. Since 
the truth-value of the statement made by using the expression 

3 Unlike Prior I assume, throughout this paper, that the relation ‘earlier than’ 
between moments of time is a partial ordering. My reason is this: Tense logic 
is concerned with the analysis of the logical properties of certain temporal 
notions. Such an analysis must perforce start from the naive intuitions which 
we have about these notions. Now, in m y  opinion, our belief that the earlier- 
later relation between moments is a partial ordering plays such a central role 
in the network of intuitions which we have about temporal notions, that un- 
less we uphold that belief we have no ground for relying, t o  any degree what- 
ever, on our intuitions about the notions which we want to analyze. 
16-Theoria 3: 1971 
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at t varies with t ,  the expression can not be said to  have a truth- 
value all by itself. However, if we assume that the truth-value of 
the statement is completely determined by (a) the expression 
used and (b) the time of ~ t t e r a n c e , ~  we may conclude that the 
truth-value of the statement made can be regarded as a function 
of only these two factors; and thus we may consider for every 
(appropriate) expression the concept of ‘the truth-vaZue of that 
expression at an arbitrary moment t’ .  With the help of this con- 
cept of ‘being true at t’ we can give a semantical analysis of those 
temporal notions with which tense logic is concerned, e.g., the 
notion represented in C1 by the operator H. For we can state in a 
general and systematic way how the truth-value of a formula Hv 
depends on the truth-values of a t  t and at other moments. For 
this purpose we need semantic structures which are not the mo- 
dels of standard model theory-which simply specify a truth-value 
for each atomic formula of the language that they interpret- 
but rather structures which specify for every forqula a truth- 
value at each moment of time. This is just what the interpretations 
defined below do. 

DEFINITION 2. m is an interpretation for C, relative to 3, iff 
function such that 

(1) the domain of 7# consists of ql, q2,. . . .; and 
(2) for each i>O m(qi) is a function with domain t7 and range 
included in {0, l}. 

On the basis of the preceding remarks the truth definition for 
complex formulae is straightforward given the intended meanings 
of the connectives -, A, H, G. 

is a 

This assumption is of course an idealization, which precludes the proper 
treatment of large portions of natural languages, viz., of those parts where the 
truth-value of the statement made depends not only on the form of the ex- 
pression used and the time of utterance, but also on other aspects of the situa- 
tion, e.g., the identity of the speaker-compare, e.g., the sentence of the words 
‘I am hungry’. However, t o  the analysis of the purely temporal notions with 
which tense logic is concerned, this idealization will do no harm. 
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DEFINITION 3. Let m be an interpretation for C,, relative to  3. 
For any formula y of C1 and t E T the truth-value of y in m at t,  
relative to 3, (in symbols: [y]; ,  t) is defined as follows: 

(1) [qil;, = 1 iff mCd= 1; 
(2) if y ,  y are formulae of C,, then 

1 if [y]; ,  = 0; 
(8 -PI;, t = { 0 otherwise; 

lii) 0 otherwise; 
1 for if all t’ E T such that t‘ < t [ y ]  ;, t’ = 1; 

(iii) [HY13,, t = {  0 otherwise; 
1 if for all t’ E T such that t < t‘ [ y ]  &, t’ = 1; 
0 otherwise. 

= [ 1 if [VI ;, t = 1 and [YI &, t = 1; 

(iv> [%I ;, t = [ 
DEFINITION 4. A formula y of C, is valid, relative to 3, iff for every 
interpretation m for C,, relative to  3, and every t E T, [ y ]  ;, = 1. 

Clauses 2. (iii) and 2. (iv) of definition 3 suggest that the set of 
valid formulae of C, may depend on the structure of 3. This is 
indeed the case: There are partial orderings 3 and 3’ such that 
the set of valid formulae, relative to  3, is different from the set 
of valid formulae, relative to  3’. Thus, intuitively, we may, in as 
far as we are ignorant of the structure of time, well be unable to  
determine which formulae are to be regarded as intuitively 
‘tense logically valid’ (i.e., valid on the basis only of how propo- 
sitional connectivas and tenses occur in them). However, once we 
assume that time has certain properties (e.g., that it is dense) we 
can regard at least some formulae as tense-logically valid, viz., 
those which are valid relative to  all partial orderings which have 
these properties. It is thus natural to introduce the following 
notion of validity. 

DEFINITION 5. Let X be a non-empty class of partial orderings. A 
formula y of C, in X-valid iff for every 3 E  X ,  q~ is valid, relative 
to  3. 
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There is a slightly different, but obviously equivalent, way in 
which we can develop the semantics for C,. This development 
makes use of a new kind of interpretation. In order to  avoid 
ambiguity I will call interpretations of this new kind interpreta- 
tions,, and I will refer to  the interpretations of Definition 3 as 
interpretations,. 

DEFINITION 6 .  An interpretation, for C,, relative to 7, is an ordered 
pair consisting of an interpretation, for C,, relative to  7, and a 
member of T. 

DEFINITION 7. For every interpretation, < m, to > for El, relative 
to  7, any formula q of C, and any t E T, the truth-value of q in 
< m, to > at t ,  relative to 7 (in symbols [q] :m, to>, J is the truth- 
value of q in m at t, relative to  7. 

DEFINITION 8. q is valid,, relative to 3; if for every interpretation, 
< m, to> for C1, relative to  7, [q] :m, 

As can be seen from Definitions 2, 3, 4, 6,  7 ,  8 the two develop- 
ments differ only in their respective characterizations of validity 
in terms of truth. While according to  the first characterization 
(Definition 4) a formula is valid only if it is true in each interpreta- 
tion at each moment, the second characterization (Definition 8) 
demands only that the formula be true in each interpretation at 
one particular moment. One may think of that moment as the 
‘present’ of the interpretation in question. Thus Definition 4 is 
based on the idea that we are, so to speak, interested only in 
what formulae are true at the present time; the truth-values of 
formulae at other moments are important only in so far as they 
determine the truth-values of certain more complex formulae at 
this present time. 

At this point the two approaches are of course trivially equiv- 
alent. But we will see later that when we add the operator N to  
C1, to  represent ‘now’, the difference between the two approaches 
becomes important; and that while the first is probably intuitively 
the more natural, the second leads to  a considerable technical 
simplification of which we will make use in subsequent proofs. 

1. 
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Finding axion systems which generate the ‘valid’ formulae of C1 
is a complex task. Indeed, every particular partial ordering 9 gives 
rise to an axiomatization problem of its own-viz., the problem of 
finding an axiom-system that will generate all and only those 
formulae which are valid relative to  T-and so does every non- 
empty class of partial orderings. Problems of this sort, however, 
will not be of my concern in this paper. Rather I will show how 
an axiom system A for C, can be modified into an axiom system 
A’ for the ‘now’-calculus defined below, so that if A generates the 
set of all formulae of C, which are valid relative to  T [X-valid] 
then A’ will generate the set of all formulae of the ‘now’-calculus 
which are valid relative to  9 [X-valid]. Since for several partial 
orderings and classes of partial orderings axiom systems gener- 
ating the corresponding sets of valid formulas have already been 
given by others, this procedure will provide us with an equal 
number of complete axiom systems for the ‘now’-calculus. 

We now turn to  the ‘now’-calculus itself. Let C2 be the lan- 
guage C, U { N}. The interpretations for Cz, relative to 9, are simply 
the interpretations for C,, relative to  9. 

The truth definition for Cz, however, cannot be obtained by a 
straightforward adaptation of the corresponding definition for 
C1 (Definition 3). The difficulty stems from the peculiar behavior 
of the word ‘now’, which our truth definition should reflect. An 
essential feature of the word ‘now’ is that it always refers back 
to  the moment of utterance of the sentence in which it occurs, 
even if it stands itself in that sentence within the scope of one or 
more tenses. It is this feature that makes the English counterparts 
of, e.g., p, + Np, A HNp A GNp, (‘if it is the case that p, then it is 
now the case that p,, it always has been the case that it is now the 
case that p,, and it always will be the case that it is now the case 
that I#) logically true. Thus our truth definition should be such 
that it makes in particular this formula valid. Such a truth defi- 
nition cannot be obtained simply by adding to  Definition 3 a 
clause of the form: 

(1) [Np,] ,  t = { ’  iff @’ 0 otherwise. 
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For if the definition correctly reflects the behavior of ‘now’ then it 
should make the formula 

(2) 40- Nqo 
valid, relative to any partial ordering, as any English counterpart 
of this formula is clearly true irrespective of the structure of 
time. This implies that the condition @ in (1) should be equivalent 
to the condition that [rp] &, = 1. But if @ is equivalent to this con- 
dition, then the formula q1 + Nq, A HNq, A GNq, will be not 
valid, relative to any partial ordering fl which has at least two 
points. For in any interpretation based upon such a fl in which q1 
is true at only one moment, t say, Nq, will, according to  (l), also 
be true only at t, and therefore q1 -+ Nq, A HNq, A GNq, will 
be false a t  t. Thus an adequate truth definition of this form cannot 
be found. 

This argument may suggest where the difficulty lies: the truth- 
values of HNq, (GNq,) depend on the truth values of Nq, in a way 
which is different from the manner in which the truth values of 
Hq, (GqJ depend on the truth values of ql; and any definition 
obtained by adding a clause of the form (1) to Definition 3 will be 
incapable of doing justice to that difference. In order to  find an 
appropriate truth definition let us recall the remark, made above, 
that “the word ‘now’ refers back to  the moment of utterance”. In 
view of this fact we should, if we want to  analyse the truth of 
formulae that contain N in terms of the truth-values of their 
components, “keep track” during this analysis of the moment of 
utterance of the entire expression. The concept we ought to 
analyze is not simply “the truth-value of at t”, but rather “the 
truth-values of rp at r when part of an utterance made a t  t’”. Of 
course, our real interest is in the truth-value of a sentence at the 
moment of its utterance. But the analysis of this truth-value in 
terms of the truth-values of the components of the sentence will 
automatically lead to the consideration of truth-values of formulas 
at moments different from the moment of their utterance. We 
thus come to the following definition: 
DEFINITION 9. Let fl be a linear ordering. Let m be an interpre- 
tation of 6, relative to fl. For any formula rp of 6, and t, t’ E T, 
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the truth-value of p in m at t when part of an expression uttered 
at t’, relative to 7 (in symbols: [q] L, t ,  t# )  is defined as follows: 

(11 [qilL, t, t’ = mCqJ It); 
(2) if y ,  y are formulas of C2, then 

=I‘ if [PI L, t, t’ = 0; 
Ci) [-TI&, 1, t’ 0 otherwise; 

1 if [PI;, t, t f =  1 and 

0 otherwise; 
1 if for all t” E T, such that 

0 otherwise; 
1 if for all t” E T such that 

0 otherwise; 

(ii3 “V A Y11 L, t, t ‘= [YIL, 1, t’= 1; 

t” < t ,  [PI L, t’, 1‘ = 1; 

1 
(iii) [HPIL, t ,  1’ ={ 

t < t”, [PI L, t”, 1’ = 1; 

1 if [TI%, t: t’= 1; c.1 “PlL, t, t’ =( 0 otherwise; 

A formula should be regarded as valid if in every interpretation it 
is true when uttered. Thus validity should be defined as follows: 

DEFINITION 10. A formula g~ of C, is valid, relative to T, iff for 
every interpretation m for C, relative to  7, and every t E T, 
[PI.%, t, t = 1. 

Since C, and C2 have many formulae in common, it is conceiv- 
able that Definitions 9 and 10 clash with Definitions 3 and 4; a 
formula of both C1 and C, could be valid, relative to  7, according 
to  Definition 4, but not valid according to  Definition 12; or vice 
versa. Such a clash would of course imply that at least one of the 
definitions is inappropriate. However, this is not the case. One 
can easily show (we omit the proof) that if is a formula of both 
C1 and C, then g~ is valid, relative to  7, according to  Definition 4, 
if and only if 9 is valid, relative to  7, according to  Definition 10. 

We will now consider the analogues for C2 of the interpretations 
for Cl. 
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DEFINITION 11. An interpretation, for C2, relative to 7, is a pair 
consisting of an interpretation, for C,, relative to  7, and a member 
of T. 

As I said before when considering interpretations we are pri- 
marily interested in the truth-values of formulae a t  only one 
particular moment. Therefore we can avoid the complications 
that arose in connection with the truth definition for C, appli- 
cable to  interpretationsl. Indeed, the truth definition can be 
given as a simple extension of Definition 7. 

DEFINITION 12. Let m= <W, to>be an interpretation, for C,, 
relative to  7. For any formula of C, and t E T, the truth-value 
of 9 in at t ,  relative to 7 (in symbols: [v] L, t )  is defined as follows: 

(l), (2) (i)-(iv): as in Definition 3; 
1 if .[TI L, 
0 otherwise. 

= 1; 

As before validity, is defined by: 

DEFINITION 13. A formula p of C, is valid, if for every interpre- 
tation, < m, t > relative to  'J, [v] <m, t >, t = 1.  

It is obvious that this definition does not conflict with Defini- 
tion 8: every formula of C, which is also a formula of C, is valid, in 
the sense of Definition 8 iff it is valid, in the sense of Definition 
15. This follows from previous remarks, and the fact that every 
formula of C, is valid,, relative to  7, iff it is valid, relative to  
7. The latter fact is true since for every interpretation, m for 
C,, relative to  'Jand to, t E T, and every formula v of C,, 

[TI;, t =  [TI:, to >, t 

(which can be shown by an easy induction argument, omitted 
here). 

In the proofs of the theorems below it will be somewhat more 
convenient to  work with interpretations, than with interpreta- 
tions,. Therefore we now drop interpretations, altogether and 
will refer to interpretations, simply as interpretations. Also we 
will speak of validity instead of validity,. 
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8 2. 

As I have said in the  introduction, the results presented in this 
paper apply to  arbitrary axiom systems. Also, I will later in- 
troduce unusual forms of proof from axiom systems. In view of 
these two facts it will be necessary to  give a precise account of the 
general notion of a n  axiom system and of a proof from an axiom 
system which will be  used in the sequel. Definition 15 provides 
this account. Definition 14, which precedes it, is concerned with 
the notion of substitution of formulae for propositional constants 
which is essential for that account. 

DEFINITION 14. Let cp, yl, . . . , Y k  be formulae of some language C 
for propositional tense logic, and let il, . . . , ik be positive integers. 
By [p,] yl/qt,, . . . , yk/qik we understand the result of replacing in p, 

instance o fp ,  in C. 

DEFINITION 15. (1) An inference rule in C is a pair consisting of a 
finite set of formulae of C and a formula of C. If R = (2, p,) is an 
inference rule in C, we call the members of Z the premisses of R 
and p, the conclusion of R. In case Z is empty, R is called an axiom 
(in C). 
(2) An axiom system for C is a set of inference rules in C. 
(3) Let R = (Z, p,) be an inference rule in C. Let r be a set of 
formulae of C, y a formula of C. We say that y follows from r by 
R iff there are propositional constants ql, . . . , q k ,  and formulae yl, 

9' in Z [. . . [[p,'] y x / q l ] .  . .] Y k / &  belongs to r. 
(4) Let A be an axiom system for C. A proof from A in C is a 
finite sequence of formulae of C such that each member of the 
sequence follows from the preceding members in the sequence by 
one of the inference rules in A. A formula of C is said to  be 
provable from A in C iff it occurs in some proof from A in C. 

If A is an axiom system for C and p, is a formula of C which is 
provable from A i n  some other language C', then y is provable 
from A in C. I will therefore omit reference to  C when speaking 
of provability. 

qi1 everwhere by w1, * * * I qik by Y)k* [TI Yl/qili * * .  I Y k / q i k  is an 

. . ., p k  of C, such that W =  [. . . [[p,] Yl/q1] . . .] y k / q k ,  and for each 
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For the remainder of this section we will limit our attention to 
axiom systems for Cl and &. The characterization of the notions 
of X-consistency and X-completeness of an axiom system for C, 
is almost straightforward. However, it is worthwhile to  note that 
the distinction between what is usually referred to  as strong 
completeness and weak completeness is here more important than 
in connection with ordinary propositional (or even predicate) 
calculus, since for C, and C, these two notions diverge. An ex- 
ample to  show that the notions do not coincide in the case of C, 
will follow the next definition. 

DEFINITION 16. Let X be a non-empty class of partial orderings, 
A an axiom system for C1. (1) A is X-consistent in C1 iff every 
formula of C, which is provable from A is X-valid. (2) A is 
weakly X-complete in C, iff every formula of C, which is X-valid is 
provable from A. (3) A set d of formulae of C1 is consistent relative 
to A iff there are no number n 2 1 and formulae ql, . . . , vn E d 
such that -(vl A . . . A vn) is provable. (4) A is strongly X-complete 
in C, iff (i) for every set d of formulae of C1 which is consistent 
relative to  A there is a 7 E  X and interpretation (m, to) relative 
to  7 such that for all 9 E d [v] T,,, to>, = 1; and (ii) if any formula - -v of C, is provable from A then so is y. 

One easily verifies that if A is strongly X-complete then it is 
weakly X-complete. The converse is not true, for we know of an 
axiom system for C, which is {J}-consistent and weakly {J } -  
complete, where J = ( J ,  < ), J is the set of integers and < their 
natural ordering (see [l]). That such an axiom system cannot be 
strongly {J}-complete follows from the fact that the notion of 
truth a t  the point 0 in an interpretation relative to  J is not 
~ o m p a c t . ~  That it is not follows from the fact that for the set d = 

A notion of truth for a language C is compact if the following is the case: Let 
X be any set of models for C such that whenever A is a set of formulae of C 
and there is a model for C in which all members of A are true, then there is a 
model in X for which this is also the case. Let 9 be the topology on X defined 
by the condition that 3(’ c X is open iff there is a set A of formulae of C such 
that x’ is the set of models in 3c in which all members of A are true. Then 
( X ,  7) is compact. 



FORMAL PROPERTIES OF ‘NOW’ 243 

{Fq,, FFq,, FFFq,, . . . , FG -ql} there is no interpretation (m, 0) 
relative to  J such that for all T E A ,  [ ~ ] $ m , ~ > , ~ = l ,  while for 
every finite subset d’ of d there does exist an interpretation 
(W,  0), relative to  J, such that [ ~ ] < m , o > ,  o = l  for all T E A ‘ .  

The next definition tells us how to extend an axiom system A 
for C, to  an axiomsystem A‘ for C, so that, roughly speaking, A’ 
will be X-consistent and X-complete for C2 if A is X-consistent 
and X-complete for Cl. 

DEFINITION 17. Let A be an axiomsystem for C,. Then A‘ is the 
axiomsystem Au {(h, 41 +. 421, q a ) ,  ({d,  LqJ, (0, L(Nq1+ 
LNq,)), (0, L4,+ NqJ, (0, -N41 t+ N - 4 J ,  “41 -+ 42) --f 
“41 + N42)), (0, 41 t--) N41)}.6 

N. B. we will refer to  the axioms Lq, -+ Nq1, -Nql t+ N -ql, 
“4, -+ q2) -+ (Nql +. Nqd, 4, - Nq1, LCNq,+. LNq,) as NL, 
N,, N,, N, and N,, respectively. The rule ({ql, 41 +. q2}, 4%) 
is called M(odus) Plonens). 

One easily verifies that if X is a non-empty class of partial 
orderings and A is an axiom system for C, which is X-consistent 
in Cl, then A‘ will not necessarily be X-consistent in &. In fact, 
suppose that X contains linear orderings with more than one 
point, that A is X-consistent and X-complete, and that ( (43 ,  
Gq,) belongs to  A (X-complete axiom systems that contain this 
rule have actually been given). Then the formula ql-+ Gq, 
will be provable from A’, though it is not X-valid. (The provabili- 
ty of q1 +. Gq, from A’ can be easily verified.) We will, however, 
select among the proofs from A’ a certain group, which we will 
call (by lack of a better term) sound proofs, in such a way that if 
A is X-consistent then all formulae of C, occurring in sound proofs 
from A’ will be X-valid, whereas on the other hand, if A is X-  
complete then the formulae of C, occurring in sound proofs from 
A’ will include the set of all X-valid formulae of &. 

DEFINITION 18. Let A be an axiom system for C,. A proof from A’ 
is sound if each of its members that is preceded in the proof by 

For any formula p, Lp stands for Q A Hp A Gp. 
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an instance of N, or N, is itself an instance of N, or N,, or else 
follows from its predecessors by MP. A formula is said to  be 
soundly provable from A’, if it occurs in a sound proof from A‘. 
The following facts concerning provability from A and sound 
provability from A and sound provability from A’ are easily 
verified, and will be most useful in further developments. We 
state them without proof. 
(1) If A is an axiom system for C,, cp is provable from A [soundly 
provable from A] and y is an instance of cp, then y is provable 
from A [soundly provable from A].  
(2) If A is an axiom system for C, and cp is provable from A then 
cp is soundly provable from A’. 
(3) If A is an axiom system for C,, cp,, . . . , cpn are soundly provable 
from A, and cpl A . . . . A cpn + cp is soundly provable from A, then cp 
is soundly provable from A. 

The notions of X-consistency in C, relative to A, of X-consist- 
ency in C, (of A) and of weak and strong X-completeness in C, are 
defined as before, except that in the definitions ‘provable’ should 
everywhere be replaced by ‘soundly provable’. 

Intuitively one would demand of an inference rule R which is 
used in an axiomatization of (all or some of) the X-valid formulae 
of C, that whenever y comes by an applidation of R from y,, . . . , 
Yk, and yl, . . . , Y k  are X-valid, then so is y. That an axiomsystem 
containing R is X-consistent in C, is in itself no guarantee that R 
has this property. For example, the axiom system consisting only 
of the rule ((4, -+ q,}, -(ql + q J )  is X-consistent since one can 
prove from it no formula whatsoever. But the rule itself clearly 
fails t o  have the mentioned property. On the other hand, A will 
indeed be X-consistent in C, if all its members have this property. 
We will call a rule with this property X-valid, and an axiom system 
all members of which are X-valid, strongly X-consistent. 

With respect to  the language C, matters are a little more com- 
plicated. For we just saw that this language contains valid for- 
mulae, e.g., q1 ++ N q ,  from which we can obtain invalid formulae, 
as, e.g., G(ql t) Nq,) by application of a rule (in this case ( {q , } ,  
GqJ) which is perfectly acceptable in the sense discussed above 
when considered as a rule for 6. However, every inference rule 
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for C, which is X-valid in the sense discussed above will have the 
property that it yields from formulae of C, which are true in 
every model relative to  every member of X at every moment, 
only formulae which satisfy this same condition (such formulae 
will be called strongly X-valid). It is this last property which we 
will need in connection with C,. Thus we come to the following. 

DEFINITION 19. (1) A formula of C2 is strongly X-valid iff for every 
fTE X ,  interpretation (m, to )  relative to fT and t E T [ p ]  $,,,, t o> ,  

= 1. (2) An inference rule (S, p) for Cl [for C,] is X-valid for 1, 
[for C,] iff whenever y, y,, . . . , yk are formulae of C, [of C,],  y,, 
. . . , yk are X-valid [strongly X-valid] ,and y comes from yl, . . . , yk 
by an application of (S, p) then y is X-valid [strongly X-valid]. 
(3) An axiomsystem A for C, is strongly X-consistent in C, [in C,] 
iff all its members are X-valid for C, [for C,]. Note that every 
formula of C, is strongly X-valid if it is X-valid; and that a rule 
(0, p) is X-valid iff p is strongly X-valid. 

I t  is now possible to  state the result which partly confirms the 
mentioned conjecture on completeness which occurs in Prior’s 
article [ 2 ] .  

THEOREM 1. Let X be a non-empty class of linear orderings; let A be 
an axiomsystem for C, which is strongly X-consistent in C, and 
weakly [strongly] X-complete in 1,. Then A’ is X-consistent in C2 
and weakly [strongly] X-complete in C,. 
Theorem 1 will be proved in the next section. In fact, it will be a 
corollary to  a number of much more general results, from which I 
will also derive a complete confirmation of the conjecture, made in 
Prior’s article, that a certain axiom system presented there is com- 
plete (cf. [2], p. 113). I have stated Theorem 1 already here, as it is 
a paradigm of all the theorems to  follow in the next two sections. 

It is worth noting that if the axiom system A is X-consistent 
and X-complete and the only members of A which are not axioms 
are the rules MP, ({ql}, Gql) and ({ql}, H q J ,  then 

(1) A’ is X-consistent and X-complete. 
(2) The rule ( {q , } ,  Lq,), and the axioms NL, N, and N, are 
redundant. 
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(1) follows from the fact that A is strongly X-consistent (all its 
rules are X-valid). (2) can be argued as follows. Let A" = A U {Nz}. 
Let P be a proof of the formula vo of 6 from A'. In the first place 
we may eliminate all applications of the rule ({  q,}, Lq,) from P in 
view of the presence of the rules ( { q , } ,  Gq,) and ( {q , } ,  Hq,). Let 
us assume therefore that P contains no applications of ({  q,}, LqJ. 

Let P1 be that part of P which precedes the first instance of 
N, in P (or all of P if no such instance occurs). First we produce 
a proof P' from A" in which occurs, for every line rp of PI, a for- 
mula of the form a, + (az + . . . (a, + p') . . .), where each of the ai 
is an instance of NL, N, or N,. The construction of P' proceeds 
inductively down the lines of P1 and is possible in view of the 
following facts: 

(a) If is an instance of an axiom of A' other than N,, NL, N,, or 
N, then q~ is provable from A". 

(b) If p' is an instance of NL, N, or N,, then p' + p' is provable 
from A". 

(c) If y comes by MP from y and y + v, and el -+ (ez + . . . Ce, 
+ y) . . .) and a, -+ (oZ -+ . . . (a, + (y -+ p') . . .) are provable from 
A", then el + (e2 + . . . ek + (a, + (a2 -+ . . . (a, -+ p') . . .)) . . .) is 
provable from A". 

(d) If y is of the form Gy and comes from y by an application of 
({qll, Gql) ,  and el -+ (ez -+ . . . (e, + y) . . .) is provable from A", 
then G (el -+ (pa + ... (ek -+y) ...) is provable from A", and 
since every formula G hl -+ xz) + (Gx, + GxJ)  is provable from 
A (which is the case because G (4, + qJ + (Gql + Gq2) is X- 
valid), Gel -+ (Gez -+ . . . (Ge, -+ Gy) . . .) is provable from A". But 
we observed under (a) that for each i ei -+ Le, is provable from A". 
Since Lq, + Gq, is a X-valid formula of 6, Lei -+ Gei is provable, 
and so p i  + Gei is provable. It follows that el + (ez -+ . . . (e, -+ 

Gy) . . .) is provable from A". 
(e) If v is of the form Hy and comes by an application of the 

rule ( {q,}, Hy) and el + (ez -+ . . . (e, -+ y) . . .) is provable from 
A" one argues in the same way that Hel + (Hez + . . . (He, -+ v) 
. . .) is provable from A". 

For each instance x of NL, N, or N, there are instances xl, . . . , 
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x k  of N, such that x1 + h2 -+ . . . ( X k  -+ x )  . . .) is provable from A”, 
for the formulae (41 +-+ Nq1) + ( b 1 +  N d ,  (41 ++ N d  A C -41 ++ 

N-43  + (-N41* N-411, and (41 - N43 A C4a * N42) A 

((41 -+ 42) * “41 + 421) + “1 -+ 42) -+ “41 + NqJ) are 
provable from A”. Thus we can extend P’ to  a proof P” in which 
occurs for each line y of P1, a formula of the form u1 -+ (u2 + . . . 
(u + y) . . .), where the ui are instances of Nl. We can then extend 
P” by adding all the instances of N, which occur as antecedents of 
lines in P”, all lines which result from detaching these anteced- 
ents by applications of MP, and further all remaining lines of P. 
The resulting proof will be a sound proof of yo from A” U {N,}. 

The case just described is of some importance, since all axiom 
systems for C, which are known (to me) have indeed no other 
inference rules than MP, ({ql}, Gql) and ({ql), HqJ. 

Q 3. 
It is natural to  ask for a justification of the specific choice of the 
operators G and H (with their given semantic interpretations) 
as primitives for a system of tense logic. A similar question can be 
asked within the context of ordinary propositional calculus about 
the primitive truth-functional connectives of any given language. 
But there the answer is in all ‘standard’ cases rather straightfor- 
ward. Many combinations of well-known truth-functional con- 
nectives (e.g., { -, A}, { -, v}, { -, +}, as well as all sets that 
include any of these) are functionally complete, in the sense that 
every truth-function can be expressed by a formula of a proposi- 
tional language containing the connectives of that combination. 

A similar justification cannot be given for the choice of the 
operators G and H. In fact, rather simple and natural tense ope- 
rators, as, e.g., the operator ‘it has been the case uninterruptedly 
for some time’ cannot be expressed by a formula of C,. It is 
therefore desirable to  consider besides C, other languages which 
have different tense operators as primitives. 

In order to  give a uniform characterization of these languages, it 
is necessary to  characterize the general notion of a ‘tense-oper- 
ator’. Unlike for the general concept of a truth-function there is 
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for this notion no entirely straightforward definition. What the 
definition ought to be is a question which I will not discuss here 
exhaustively. But I will treat the problem in so far as is necessary 
for the analysis of the operator ‘now’ with which this paper is 
concerned. 

First this: Truth-functional connectives in natural languages 
(e.g., the expressions ’and’, ‘not’, ‘neither . . . nor’ of English) 
are expressions with the property that the truth-value (at a given 
moment t )  of a sentence formed by means of such an expression 
out of other sentences is determined completely by the truth- 
values (at that same moment t )  of the component sentences. In 
so far as truth is concerned the behavior of a truth-functional- 
say, 2-place-connective, is completely characterized by some 
2-place truth-function, i.e., a function which assigns to  each pair 
of truth-values a truth-value; and thus the study of truth-func- 
tional connectives can properly be reduced to  the study of truth- 
functions. 

With tense operators of natural languages ( e g ,  the tenses of 
English, or expressions like ‘it has sometimes been the case that’ 
‘it has been the case that ... ever since ...’, etc.) the situation 
is more complicated. Here the truth-value, at a given time t ,  of a 
sentence formed by applying a tense, or such an expression, to  (an) 
other sentence(s) does not depend only on the truth-value(s) of 
that (those) sentence(s) a t  t, but also (in some cases even exclu- 
sively) on their truth-values at moments other than t .  On the 
other hand one easily verifies that for the expressions which were 
just listed as examples nothing more is required to  determine the 
truth-value of the compound sentence at t than the truth-values 
of the component sentence(s) at t and other moments. Thus with 
respect to  (momentary) truth-value the behavior of such an ex- 
pression is completely characterized by a function which takes 
both as arguments and as values ‘courses of truth-values through 
time’, i.e., functions from moments to  truth-values. (If 3 is the 
structure of time we will refer to  functions with such arguments 
and values as Ftenses.) I maintain that this principle is an es- 
sential aspect of what should be regarded as a ‘tense operator’. 
Therefore the study of tense operators reduces to  the study of 
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tenses, just as the study of truth-functional connectives comes 
down to the study of truth-functions. 

The above considerations naturally lead to  the following 
definition. 

DEFINITION 20. Let 7 be a partial ordering. An n-place 3-tense is 
an n-place function from {O,l]. into {0,1}..7 

The study of tenses is complicated by the fact that we do not 
know what the structure of time is. I said already that for this 
reason we want to  consider classes of partial orderings, as well as 
single partial orderings. For given tense operators of English it is 
often fairly clear what the characterizing 7-tense is, independently 
of any exact determination of the structural properties of 7. So, 
for example, will the 7-tense corresponding to  the expression 
‘it has always been the case that’ be the function F. which assigns 
to  a function f from moments to  truth-values that function g 
such that for any moment t E T g(t)  = 1 iff for all t’ preceding t ,  
f(f) = 1. Thus there corresponds to  this tense operator a 7-tense 
F3 for every possible time structure 7-i.e., a function which 
assigns to each possible time structure 7 a 7-tense. I take such 
functions to  embody the most general idea of a tense. 

DEFINITION 21. An n-place tense is a function which assigns to  each 
partial ordering 7 an n-place 7-tense. 

For any class of partial orderings X I  an n-place X-tense is the 
restriction to  X of an n-place tense. 

It is doubtful whether every function which is a 7-tense accord- 
ing to  Definition 20 is intuitively acceptable as the semantic 
characterization of a possible tense operator. Even less plausible 
is it that every tense can be so regarded. For example, a tense 
which assigns to  the structure Re of the real numbers the Re-tense 
which corresponds to  the expression ‘it has always been the case 
that’ and to  the structure Rat of the rational numbers the Rat- 
tense corresponding to  the expression ‘it will some time be the 
case that’ clearly is a monstrosity. It is therefore desirable to  

‘ For any sets V,  V, understand by Uv the set of all functions from V into U. 
17 - Theoria 3: 1971 
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further limit the notion of a tense. I maintain that this can indeed 
be done in a satisfactory way. (Cf. [4].) However, as the results on 
'now' which are proved in this article hold true even for the exces- 
sively general notion of a tense developed here, we will leave 
this problem aside. 

To each n-place truth-function f corresponds a tense 3 such that 
for every partial ordering 3, t E T and members P,, . . . , P ,  of 
{O,l},, 3 (P ,  (t),  . . . , P,(t)) = (3, (P,, . . . , P,)) (t). This fact enables 
us to  treat truth-functional connectives-and in particular the 
standard connectives which occur, e.g., in C,-as special tense 
operators. 

DEFINITION 22. (1) For any countable indexed family 3 of tenses 
let C3 be the language whose connectives are those symbols C; 
such that i E Dom 3 and n is the number of places of 3(i).* 
(2) The notion of an interpretation for C3 relative to 3 is the same 
as that of an interpretation for C, relative to  'J as defined in 
Section 1 (Definition 6). 
(3) The truth-value of a formula Q] of C3 in an interpretation (m, 
to> relative to 3 and T at a moment t E T, [Q ] ] ' ; ; , ~~> ,~ ,  is defined by: 

(i) [a1  %I, to>, t = m(aJ Ct); 
( 4  [CYCQ], * * * Pn31 %I, to>, t = J(i> IF,, ., F J  Ct), 

where for i = 1, . . . , n, 
pi = It' E 3: [(pi] ";, to>, t'= 1). 

(4) A formula Q] of C3 is T-valid, relative to 3, if for every inter- 
pretation (m, to> for C3 relative to  T, [Q]]:;, to>, 1. Q] is X- 
valid relative to 3 iff Q] is Fvalid, relative to  3 ,  for all f7 E X. 
(5) For any language C3 let CJ(N)=C3U {N}. The interpretations 
for C3(N) relative to tT are the interpretations for C3 relative to  f7, 
and [cp]";, is defined for formulae of C3(N) by the clauses 
(i) and (ii) above together with the clause 

(iii) "~]lJ;i, to>, t =  [Q]I <m, +p, to. 

3-validity and 3C-validity are then defined as above. 

By a countable indexed family of objects of a certain kind I understand here a 
function which is defined on some set of positive natural numbers and which 
assigns to each member of its domain an object of the kind in question. 
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We will, for simplicity, assume that all the languages to  be 
considered henceforth are truth-functionally complete. We will be 
even more specific and consider only indexed families 3 of tenses 
the domains of which contain the numbers 1 and 4 and where 
3(l), 3(4) are the tenses which correspond to  the standard meaning 
of the connectives -, A, respectively. 

Our first result of this section states that any formula of a 
language C3(N) which contains N is equivalent to  a formula that 
does not contain N. 

THEOREM 2. Let 3 be an indexed family of tenses. There is a (primi- 
tive recursive) function R3 from the formulae of C3(N) to formulae 
of C3, such that, for every partial ordering TI q~ +-+ R3(v) is 3-valid 
relative to 3. 

PROOF. By a special formula of C3(N) understand a formula of the 
form ViEl (9, A Nyi), where none of the formulae vi, yi contains 
N. (By V,k,,a, understand al v a, V .... v 0,. Similarly for 
VnCSa.) We first defme inductively a function R; which maps the 
formulae of C3(N) into special formulae of C3N): 

(i) W q , )  = 4,; 
(ii) suppose that iEDom 3, that 3(i) is n-place, that R5(vl), 
. . ., R&,) have been defined, and that for i = 1, . . ., n R;(y,) = 

V J ? ~  (vij A Nyij). 

For any i S n  let s, be the set of d l  formulae x1 A . . . A x k ,  where for 
j = 1, . . . . , ki, x j  is yrj or x j  is myi,. Let S be the set of all formulae 
of the form (al) A . . . A (a,), where for i = 1, . . . , n, ai E S,. For each 
U=X1 A . . . h x k i  E s, kt 

the disjunction of all those yij, for which 
yi  (a) = x j = y i I ,  provided some x 5  is yir; 1 -(vil -+ y d 1  if for all j s k,, 2, is mytr. 

For each a E S, let vi (a) be vi (ai) where ai is the i f A  conjunct of a. 
We put 

R;(cXvl, . . I %I)) = vuCslc:(vl(.), - * * I  v n ( 4 )  " NU). 
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(iii) Suppose that R;(q) = V jkl (p1 A Ny Then put 
RS(Nv)=Vjk,l ((vi -+ vj) A N(vj A yj)). 

Clearly R;, as defined by (i)-(iii) is a function which maps every 
formula of C3(N) onto a special formula. It is tedious but straight- 
forward to  prove by induction that for all ? of C3(N), ? * R;(v) 
is $valid (for arbitrary 9). 

For any formula v of C3 let R3(v) be the formula which we 
obtain by deleting all occurrences of N from R;(v). Clearly R3(p) 
is a formula of C3. It is also obvious that R;(p) t) R3(v) is 3- 
valid for all 3. It follows that g~ * R3(v) is Fvalid; q.e.d. 

The general concepts of an inference rule, an axiom, an axiom 
system for a language C3, as well as the notion of provability, have 
already been given on pp. 0.0,O.O. We now define for an arbitrary 
axiom system A for C3 an extension At which will stand to  A in 
the same relation as, for any axiom system B for C1, the system 
B‘ for C, stands to  B. 

DEFINITION 23. Let 3 be an indexed family of tenses. 
(1) Let tz(3) be the set containing 
(a) all pairs 

(0,  c?(ql . * *  45-1 (CNqj A qj+l) 
[(Nqj A ca(q1 . . . qj-1 Cqi+l v qj+J 4 j + 3  ... qn+2))  v 

4 j + 2 )  4 j + 3  * * .  4 n + 2 )  * 

N -qj  A CXqi . . . qj-iqj+2 4j+3 q n + J I > ,  

where i E Dom 3, n equals the number of places of 3( i )  and 1 Sj 
S n; 
(b) all pairs ({ q1 t) qz}, v t) q~‘) where y is a formula of C3 and v‘ 
results from replacing an occurrence of q1 in v by 4,. 
(2) For any axiomsystem A for C3 let A*= A U n(3) U {MP, 
N,, N,, N2}. Again a soundproof from A* is a proof in which every 
line following an instance of N, is itself an instance of N, or else 
comes from previous lines by MP. The concepts of X-consistency, 
strong X-consistency, weak X-completeness and strong X-complete- 
ness in C3, or C3(N), of A or A* (where A is an axiom system for 
C3) are straightforward generalizations of the notions defined 
earlier for Cl, C,, A and A’; I will not spell them out. 
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The next theorem is similar to  Theorem 1, but has a much wider 
range of application. 

THEOREM 3. Let X be a non-empty class of partial orderings; let 3 
be an indexed set of tenses; let A be an axiom system for C3 which is 
strongly X-consistent in C3(N) and weakly [strongly] X-complete 
in C3, Then A* is X-consistent in C3(N) and weakly [strongly] 
X-complete in C3(N). 

PROOF. One easily verifies that if A is weakly X-complete in C3 
then pt)R3(p) is soundly provable from A*. For pt)R;(p) 
(where R; defined as in the proof of Theorem 2) is provable from 
A* - {N,}, and R'(p) t) R(p) is soundly provable from A*. Sup- 
pose first that A is weakly X-complete in C3. Let p be a X-valid 
formula of C3(N). Then, by Theorem 2, R3(p) is X-valid. Since 
R3(p) is a formula of C3 and A is X-complete in C3, R3(p) is 
provable from A. Thus by the above observation p is soundly 
provable from A*; and thus A* is weakly X-complete in C3(N). 

Now suppose that A is strongly X-complete in C3. Let d be a 
set of formulae of C3(N) which is consistent relative to A*. Let 
R 3 ( 4  be the set of all R3(p) where p E d.  Since p ++ R3(p) is 
soundly provable from A* for all p E A ,  R3(d) is consistent relative 
to  A. Thus there is a YE X and an interpretation (M, to) relative 
to  3 such that for all y E R 3 ( 4  [y]" 3 = 1. So, by Theorem 2, 
[p]";,tO>, to=l foral lpEd.  

To show that A* is X-consistent in C3(N) we first show by induc- 
tion on the length of proofs that every formula which is provable 
from A* - { N,} is strongly X-valid. This is true since all inference 
rules in A* -IN,} (including the axioms!) are strongly X-valid. 
Thus a sound proof from A* will always consist of a number of 
lines which are (strongly) X-valid, followed by a number of in- 
stances of N, and applications of MP. It is clear that N, is X-valid 
and that MP preserves X-validity. Thus all soundly provable 
formulae are X-valid. 

THEOREM 4. Let X, 3, A be as in Theorem 3 .  Suppose there is a 
formula A of C3 such that of every YE X, interpretation (M, t o )  
relative to 3 and t E 3, 
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[A]";,i,>, : = 1  i f f for  all t ' ~  3, [q1]2$,50>, $'= 1.  

(We will write 'Lp' for [ A ]  p/q,.) Let A'= A U (MP, N,, N,, NL, N,, 
N,, <(ql},  Lq,)}. If A is weakly [strongly] X-complete in C3, then 
A' i s  weakly [strongly] X-complete in C3(N). 

PROOF. Every axiom in R(3) is provable from A'-{Nl}. For 

L(qj+l +- Lqf+l) --f [Cf(ql . * * 45-1 ((45 A 45+1) 
t(qi+l A CXq1. * 45-1 (4 ,  v 45+2) 45+3 * * * qn+z))  v 
( -qj+l A c?(ql * a *  45-1 q 5 + Z  45+S ... qn+Z))ll 

q5+2) qi+3 * * * qn+Z) 4-+ 

is a X-valid formula of C3, and thus all its instances are provable 
from A. Since moreover L((Nq,+l +- LNqj+l) and -Nqj+l t) 
N -qj+l are provable from A'' - (Nl}, it follows that 

c?(ql * . *  45-1 ((45 Nqj+l) 45+Z) 45+3 ... qn+Z) * 
[INq5+l A CXq1.*- 45-1 (qj v 45+a) 45+3 q n + J )  v 
(N -qj+l A c?(ql * * *  45-1 q3+2 45+3 * * *  qn+2))l 

is provable from A' - (Nl}. 
Further we observe that for all formulae p, p' of Cf(N), where 

q' comes from p by replacement of an occurrence of q1 by q2, 
L(ql t-) 42) +- L(p t) q') is provable from A' - {Nl}. The proof is 
by induction on the number of occurrences of N in q. If 9 does not 
contain N, then L(ql t) 4,) -+ L(q t) q') is a X-valid formula of CJ 
and thus provable from A. Now assume the assertion has been 
demonstrated for formulae with at most k occurrences of N and 
suppose that p contains k+ 1 such occurrences. Let Oc be a 
particular occurrence of q1 in q and let 9' be the formula which 
results if we replace Oc by 4,. Let n be the maximum of the indices 
of propositional constants occurring in q or p'. If q has a subformula 
of the form Nx which does not contain Oc, let 7y be the formula 
which we obtain by replacing that subformula by qn+l, and 7y' the 
result of replacing Oc in 7y by 4,. By induction hypothesis L(ql 4-+ 
4,) --f L(7y t) y') is provable from A' - { Nl}. Since L(ql c-) 4,) --f 
L(q t-) 9') is an instance of this formula it too must be provable 
from A' -{Nl}. If all occurrences of N in q are in front of sub- 
formulae containing Oc, then q must have a subformula Ne where 
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e contains Oc but no occurrence of N. Let e’ be the result of 
replacing Oc in e by q2. Then L(q, t) q2) -+ L(e t) e’) is provable 
from A. Further, with the help of N,, N, and (g, Lq, -+ Nq,) we 
can prove L(e t) e’) + L(Ne ++ Ne‘). Thus L(ql e, q2) -+ L(Ne t) 
Ne‘) is provable from A’ -{Nl}. Let y be the result of replacing 
N e  in p by qn+, and let y’ be the same formula with 4n+2 instead of 
qn+,. Then L(qn+, t) q,+a) -+ L(y t) y‘) is by induction hypothesis 
provable from A‘ -{Nl}, and so is therefore its instance L(Ne t) 
Ne’) -+ L(p t) p’). I t  follows that L(ql t) q2) + L(p t--) p’) is 
provable from A’ - { N,}. 

It is now obvious that we can produce for any proof P from 
A* -IN,} a proof P’ in which, for every line p of P, occur both 
g~ and Lp. Every step in P can either be automatically imitated in 
P’ or else, in view of the preceding remarks, in the case of an 
application of a rule in R(3) can be replaced by a proof from 
A‘ -{Nl} of the appropriate theorem and, if necessary, some 
applications of MP. A sound proof P from A* can then be convert- 
ed into a sound proof from A‘ because we can first convert the 
part of P preceding the first instance of N, into a proof P’ from 
A‘ - {  N,} and then simply add to  P’ the remaining lines of P. 
Q.e.d. 

COROLLARY. Theorem 1. 
PROOF. If X consists of linear orderings then the formula Hq1v 
qlvGq, satisfies the condition imposed on the formula A in 
Theorem 4. So Theorem 4 applies to C,. 
Prior conjectures in his article on ‘now’ that a certain axiom 
system-consisting of the axioms Al.1, A1.2, A2.1, A2.2 (p. 
106); the rule MP; the rule RL (p. 111); the axioms L1 -L5 (p. 
111); and the axioms J1 -J6 (p. 113)-is complete. The notion 
of validity which Prior has in mind is that of being true (at the 
present) in every interpretation relative to any structure ( T ,  R )  
where R is a binary relation on, but not necessarily a partial 
ordering of, T. (Cf. [2], p. 113.) 

Indeed, for the class XI of all partial orderings his axiom system 
is not complete, for the formula Gq, -+ GGq,, which is X1-valid, 
cannot be proved from that system. However, if we add this 
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formula as well as its counterpart for the past, Hq, + HHq,, to  
his system we obtain an axiom system which is indeed &-corn- 
plete in the language which Prior discusses. 

To be precise, let Alw be the 1-place tense which assigns to  
each partial ordering 9 the function Alw(9) defined in the fol- 
lowing way: (i) iff in {0, l } T  takes the value 0 for some t E T, then 
Alw(9)Cf) is the function in {0, l}T with constant value 0; (ii) if f i s  
the function in {0, 1JT with constant value 1, then Alw(9)Cf) =f. 
Let 3, be an indexed set of tenses with domain consisting of 
the numbers 1, . . . , 5 which 'assigns' to  the connectives - , A, 

G, H their intended meanings and such that 3,(5) = Alw. Let us 
write 'L' for C:. Let A, be the axiom system for C30 consisting 
of the rules MP and ( {q , } ,  Lql), and the axioms G(q, -+ q2) + 

(Gql Gq2)1 H(ql 42) j (Hql Hq2), PGql qlJ FHql --f 41, 
Lql 411 Lql Gql, Lql --f HqlJ L(ql 42) (Lql Lq2), -Lql 
-+ L -Lq,, Lq, -+ LLq,, together with a complete set of axioms 
for ordinary propositional logic. Let A, be A, together with the 
axioms Gq, + GGq, and Hq, -+ HHq,. Let A$ [At]  be the axiom 
system for C3,(N) consisting of A, [A,] together with the axioms 
41 Nql, Nql --f 41, L(Lql j Nql)J L(Nql --f Lql), L(N -41 j 

N q l ) J  L( - Nql --f -41) and L(N(ql 42) --f "41 --f Nq%))' 
One easily verifies that A, is strongly X-consistent in C3,(N), that 
Lq, satisfies the condition on 2, of Theorem 4, and that for i = 0,l 
A: (as defined on p. 243) is included in At. Moreover, it is known 
that A, is strongly X1-complete in C30. (Cf. [S].) Thus it follows 
by Theorem 4 that At is strongly X1-complete in C3,(N). 

As a matter of fact, we can just as easily obtain a complete 
confirmation of Prior's conjecture. I t  suffices to  observe that the 
restriction to  partial orderings-observed throughout this paper 
for reasons mentioned in Section 1-plays no role whatever in 
the proofs. Thus Theorem 4 is equally true if we weaken the 
hypothesis that X is a class of partial orderings to  the supposition 
that X is an arbitrary class of structures (T, < ) where T is a non- 
empty set and < an (arbitrary) binary relation on T. Let X ,  be 
the class of all such structures. It is known that A, is strongly 
&complete in C3,. (Cf. [S]). Thus A,+ is strongly Xo-complete 
in C3," 
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§ 4. 

We now turn to  languages for first order predicate tense logic. 
For the remainder of this paper we assume that the class S men- 
tioned in Section 1 contains besides the symbols already listed 
there a denumerable set of symbols v,, vl, v2, . . . (called ‘individual 
variables’); for each n s 1 an uncountable number of symbols 
Q: (called ‘n-place predicate symbols’); a proper class of symbols 
c, (called ‘individual constants’); the symbols V and 3 (called the 
‘universal quantifier’ and the ‘existential quantifier’, respectively); 
and the symbol = (called the ‘equality sign’). For any countable 
(possibly empty) set Q of predicate symbols and individual con- 
stants, and any indexed family of tenses 3, C , ,  is the set con- 
sisting of the symbols of C3 together with those of Q, the individ- 
ual variables, the quantifiers, and = . We put C3, ,(N) = C, a U { N } .  
By CLa we understand the set C3,,a where 3,, is the family of 
tenses such that C3, is the language Cl (i.e., where 3, gives the 
appropriate interpretations for the connectives and tense oper- 
ators of C). The formulae of C3, a are defined by: 

(i) qi is a formula; 
(ii) if Q: E Q and PI, . . . , Pn are either variables or 

individual constants in Q, then Q,”(Bl, . . . 8,) is a 
formula; 

(iii) if a and are variables or individual constants in 
Q, then a = P is a formula; 

(iv) if iEDom 3, 3(i) is n-placed and vl, ..., v n  are 
formulae, then Cy(vl . . . Q),,) is a formula; 

(v) if v is a formula, then (Vv i )v  and (3v& are 
formulae. 

The formulae of C3,,(N) are defined by clauses (i)-(v) above 
together with the clause 

(vi) if v is a formula, then NQ) is a formula. 

An occurrence of a variable a in a formula Q) is bound if it is 
within a subformula of Q) which is of the form (Va)y or (3a)y. 
Other occurrences of variables are called free. A formula without 
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free occurrences is called a sentence. The universal closure of a 
formula v is the sentence (Val) . . . ('la,) v where al, . . . , a, are all 
the variables which have free occurrences in v, listed according to  
the magnitudes of their indices. 

Notice that the formulae of C3 and C3,0 coincide. More im- 
portant is it to  observe that if Q contains uhnitely many individul 
constants then we can give a recursive characterization of all 
sentences of C3, (as well as of those of C3, ,(N)) without refer- 
ence to  formulae which are not sentences as follows: 

(i') qt is a sentence of C3, 
(ii') if Q: E Q and bl, . . . , pn are individual constants 

in Q then Q:(P1 . . . j3,) is a sentence of C3, o; 
(iii') if a and j3 are individual constants in Q then 

a = j3 is a sentence of C3, o; 
(iv') if i E Dom 3, 3(i) is n-placed and vl, . . . , v n  are 

sentences of C3, then C;(vl . . . vn) is a sentence 
of C3,o; 

(v') if p is a sentence of C3, and a an individual con- 
stant in Q, then (VvJ [v] vi/a and (3vi)  [v] vi/a 
are sentences of C3, o.8 

An interpretation for a language C3, a(N) relative to 3 is a triple 
(U, R, t ) ,  where: 

(i) U is a non-empty set; 
(ii) R is a function with domain consisting of Q 

together with the symbols ql, q2, . . . .; 
(iii) R(qJ is a function from T into (0, l}; 
(iv) if Q: is an n-place predicate constant in Q, then 

(v) if c. is an individual constant in Q, then R(c,) 

(vi) t E T. 

R(Q3 is a function from T into D(U");1° 

is a function from T into U; 

@ By ['p]B/u I understand the result of proper substitution of /? for u in 'p. 

lo For any set V, Vn is the nth Cartesian power of V, and D(V) is the power set 
of u. 
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A referentially complete interpretation for C ,  4(N) relative to T 
is a quadruple (U, R, H, to)  where (U, R, to )  is an interpretation 
for C3, .(N) relative to  T, and H is a 1 - 1 function from a set of 
individual constants which are not in Q to  constant functions from 
T into U.ll 

Let 7y1 = (U, R, H, t o )  be a referentially complete interpretation 
for C3, ,(N) relative to  T. For any sentence of C3, u Dorn a(N) 
the truth-vaZue relative to 3, !7 in m at t ,  [v] $,; is defined by the 
following clauses: 

(4 [4il%,5 = R(4J It); 
(ii) [Q: (Cal . . . can)]%,:= 1 iff 

( ( R  U H )  (CaJ (t), .+  . j (R  U H )  (Can> ( t ) )  E 
R ( Q 3  (t); 

(iii) [ca = ca] 2,: = 1 iff 
(R U MI CC.1 (t> = (R  U HI CCP) It); 

(iv) [CXPl -. . Vnl $5 = (3(i) (@I, * * , @,>I Ct), 
where for j=1, ..., n F , = ( t ‘ E T :  [q.~,]$,:8=1}; 

[[y] /?/a]$,:= 1; [(Vvi) [TI vi/a]$,; = 1 iff for all 
(v) [ (3v i )  [pl] vi/a] 2,: = 1 iff for some /? E Dom H, 

/? E Dam H, “PI /?/a1 2,: = 1; 
(Vi) “PI $3 = [PI $,:o. 

Now let m = (U, R, to) be an (arbitrary) interpretation for 
C3,,(N), relative to  T. Then for any sentence y of C3,,(N) and 
t E T the truth-vahe of g~ at t in m relative to 3, [PI;, t ,  is the 
truth value of q~ at t in any referentially complete interpretation 
(U, R, H, to>, relative to  T. 

I will not give here any philosophical justification for the treat- 
ment of individuals and quantification for tense logic which is 
implicit in the preceding formal definitions. I only want t o  say 
that in my opinion the system given here is certainly the most 
natural of those I have seen; and that it is an adequate frame for 
most philosophical investigations in this area. The decision to  
limit attention to  predicate symbols and individual constants- 

l1 A constant function from T into U is a function f from T into U for which 
there is a u E U such that f ( t )  = u for all t E T. 
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instead of considering also function symbols of arbitrarily many 
places-was dictated by considerations of convenience only. 
Theorem 5 below holds also for languages which do contain 
function symbols. 

A formula a, of C,, ,(N) is valid relative to 3 iff for every inter- 
pretation 712 = (U, R, to) for C ,  ,(N), [y~]%,:~ = 1, where y is the 
universal closure of a,. X-validity is defined as before. For language 
C3, the definitions of an interpretation and the truth-value of a 
sentence at a moment in an interpretation, and validity of a for- 
mula are the same as those given above for C,,(N), the only 
difference being that now clause (vi) of the truth definition above 
is superfluous. 

An inference rule for a language C3,, [of C,,(N)] is again a 
pair (&a, )  where .Z is a finite set of formulae of C3, [of C3, o(N)] 
and a, a formula of C3, , [of C3, a(N)]. The notions of an axiom 
and of an axiom system are defined as before. We say that a for- 
mula y~ of C,, , [of C,, ,(N)] comes from the set of formulae Z of 
C3, [of C,, ,(N)] by an application of the inference rule (Zl v) 
for C,, , (for C,, ,(N)] if there are variables xl, . . ., xk, xi, . . xi, 
predicate letters Q$'), ..., Q;(.), and formulae xl, ..., xn, of 
C,, , [of C,, ,(N)] such that y comes by proper substitution in a, 
of x; for xl, ..., of x; for xk,  of x1 for Q$l), ..., and of xn for 
Q a . 1 ,  and for each a,' E C there is a y' in Z which comes by proper 
substitution in a,' of xi  for xl, . . ., of x i  for xk, of x1 for Q$l)l . . ., 
and of zn for Q;(").l2 A proof in C,, , [C,, ,(N)] from an axiom 
system A for C,, , [C,, ,(N)] is a finite sequence of formulae of 
C3, [of C,, ,(N)] in which each formula either comes by one of 
the inference rules of A from the preceding formulae, or else is an 
alphabetic variant of a preceding formula.12 The notion of strong 
#-validity of a rule for C,, , [C, ,IN)] and of X-consistency in 
C ,  [C,, ,(N)], strong X-consistency in C3, [J3, ,(N)], and 

l2 The notions of proper substitution of a variable for a variable, of proper 
substitution of a formula for a predicate letter, and of an alphabetic variant, 
referred to here, are the usual ones. I do not give their rather involved defini- 
tions which can be found for example in Kalish and Montague [3], pp. 148, 
157-159, 155-156. 
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weak and strong X-completeness of an axiom system A for C,, 
[C,,(N)] are defined as before. For any axiom system A for 
C 3 , O  let 

A‘= A u {MP, <{TI, C V b )  T), N,, %I. 
A sound proof in C3, ,(N) from A’ is a proof in C ,  , from A’ in 
which every line following an instance of N, is itself such an 
instance, or else comes from previous lines by an application of 

Our result for languages for first order predicate logiclwill be 
somewhat less general than those for languages of propositional 
tense logic. On the other hand, they are in my opinion more 
interesting, since the fact expressed by Theorem 2, that every 
formula containing N is equivalent to  one which does not con- 
tain N, fails for languages of predicate tense logic. 

MP or ({d, ( V d  Y J ) .  

THEOREM 5. Let X be a non-empty class of partial orderings, 3 an 
indexed set of tenses, Q a countable set of individual constants and 
predicate symbols. Let A be a formula of C3,0 which satisfies the 
condition of Theorem 4 .  (Again we write ‘Lq’ for [A] q/ql.) Let A 
be an axiom system for C3,, which is strongly X-consistent in 
C ,  ,IN) and strongly X-complete in C ,  ,. Then A‘ is strongly X -  
complete in C ,  ,(N). 

The proof of theorem 5 has the irritating-if common-property 
that when you try to  write it up either you don’t write enough, or 
else you write far too much. I have chosen the second alternative. 
However, since the idea behind the proof is very simple, I will 
first give a rough description of it. He who is satisfied with 
this informal explanation may save himself the trouble of reading 
the proof itself. 

To show that a consistent set A of sentences of C3,0(N) has 
an interpretation in which all the sentences of A are true simul- 
taneously, we proceed as if the subformulae of those sentences 
that begin with N were atomic formulae. In this way we can regard 
A as a set of sentences of a language C, ,’ (where QG Q‘) for 
which, since it is a consistent set relative to  A, there is an inter- 
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pretation in which all sentences are simultaneously true. This 
interpretation gives us, in a completely straightforward way, an 
interpretation in which, at one moment, all the members of d are 
true according to the truth definition for C,, ,(N). 

PROOF. Let us call a formula y of C,,,(N) an n-place irreducible 
predicate if (1) for each i such that 1 Si Sn there is exactly one 
free occurrence in y of the variable vi; (2) for i = 1, . . . , n - 1 the 
free occurrence of vi+l in p is the first free occurrence in p to the 
right of the free occurrence of vi in y ;  (3) no other variables have 
free occurrences in p; and (4) p contains no individual constants. 
For any n-place irreducible predicate y and individual symbols 
(constants or variables) a ,  . . . , a, we write p(al . . . a,) for [p] al/ 
vl, . . . , an/v,. Let G be a function which assigns to each n-place 
irreducible predicate of C,, ,IN) a different n-place predicate 
symbol not in Q. Let Q‘ = Q U Range G. If p is any formula of 
C3, , and n is the total number of occurrences which are either 
occurrences of individual constants or free occurrences of vari- 
ables, then there is a unique n-place irreducible predicate p of 
C3, , such that p = p (a1 . . . a,), where each ai is a variable or indi- 
vidual constant. The function G therefore induces a function G’ 
from the formula of C,, , to atomic formulae of C3, ,’ defined by 
the condition 

where y ,  n are such that y is an n-place irreducible predicate and 
y = p (al . . . a,). The function G‘ determines in turn a function G” 
from the formulae of C3,,(N) to formulae of Cf,,’, defined 
recursively by: 

(i) if y E C3, , then G”(p) = p. 
(ii) G”(Ny) = G’(y). 
(iii) G’(C7(pl . . . p,) = C7(G”(yl) . . . G”(p,)); 

G”((vvi)y)= (Vvi)G”(v); 
G”((3vi)y) = (3vi)G”(y). 

Now let d be a set of sentences of C,, ,(N) which is consistent 
relative to A‘. Let d‘ be the union of d and the set of all universal 
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closures of formulae of the forms q t) Nq and L(Nq + LNq), 
where q is a formula of C3,,(N). Then d' is consistent relative 
to  A', since all the added formulae are soundly provable from A'. 
Clearly G"(d') is a set of formulae of C3, ,' which is consistent 
relative to A. Since A is strongly X-complete in C3, o' there is a 
3 e  X and an interpretation m = (U, R, to) relative to 3 such that 
for all q E G"(d), [TI%,.: = 1. Let H be a function which assigns 
to each constant function from 3 to an element of U a different 
individual constant which is not in 0. Let lut'=(U, R, H, to); 
Q' = Q U Dom H; Q"' = Q U Q". Rl' is a referentially complete 
interpretation for C, relative to 3. For t E T, let F, be the set 
of all sentences q of C3, = 1. The function 
G" can be extended in the obvious manner to a function from the 
formulae of C3, ,**(N) to formulae of C3, ,"'. We will refer to this 
extension also as G". Let R' be the restriction of R to Q". Then 
m" = (U, R,' H, to) is a referentially complete interpretation for 
C3, relative to 3. I claim that: 

(1) for every sentence q E A ,  [T] 2; = 1. 

Since d E (G")-l (rto), (1) follows from 

(2) for every sentence q of C3, ,"' and t E T 
[q] $: = 1 iff G" (q) E F,. 

(2) is proved by induction on sentences of C3, It is clear that 
(2) holds for atomic sentences, that if (2) holds for ql, . . . , qn then 
it holds for C7(q1 . . . qn), and that if (2) holds for q then it holds 
for ( V v i )  [q] vi/a and for (3vJ  [q] vi/a. Suppose that q = Ny and 
that (2) holds for y. First assume that [q]$< = 1. Then [y]$<to= 
1. So by induction hypothesis G"(y) E Fto. Let y' be a formula of 
Ch ,IN) such that for some vil, . . ., vik and constants al, . . ., a,, 
y = [y'] vil/al, . . . , vzk/ak. d' contains the formula (Vv,,) . . . (Vvik)  
(y' t) Ny'). Therefore F,, contains G"((Vv. ) . . . (Vvik,), (y' t) 
Ny')), which is equal to (Vvi l )  . . . (Vvik)  ((?'(ye) ++ G (Ny')). 
Then Fto also contains [G"(y') t) G'(Ny')] al/vil,  . . . , ak/vik, 
which is G"(y) c-) G"(Ny). So G"(Ny) E Ft0. By an analogous 
argument we can infer that LG"(Ny) = G"(LNy) E Fto. I t  follows 
that G"(Ny) E F,. 

such that [q] 2;#, 
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In a similar fashion one shows that if G”(q) E r ,  then 
[q]3< = 1. It follows that A* is strongly X-complete in C3, o(N). 

It is clear that Theorem 5 applies to  the language C1,o when 
3( is a class of linear orderings. 

8 5. 

In this section I will show that in general there is not for every 
sentence q of C,,(N) a sentence y of C3,0 such that q++y is 
valid. To this purpose I will give two theorems, which together 
will show that the elimination of N (in the sense of Theorem 2) 
is indeed impossible for most reasonable choices of 3, Q, and X .  
Undoubtedly similar theorems could be obtained for combina- 
tions of 3, Q, and X which are not covered by the theorems 
presented here. But it seems to  me that these two give a suffi- 
ciently clear indication of along what lines such results can be 
proved. 

The first theorem is concerned with a large class of tenses, viz., 
all those which are invariant, according to  the following definition. 

DEFINITION 25. An n-place tense 3 is X-invariant iff whenever 
3,   EX, g is an order-isomorphism from f7 to  3’, and pl, . .., 

where by g(p,) we understand that function {0, l}T’ such that 
for any t E T’, g(pi) (t)  =p,(g-’(t)). 

Pn E {O, 115 then Jcm(g(Pl), . . . ! g(Pn)> = glJ(f7) (Pl, . * .  9 Pn)), 

It is my opinion that any intuitively plausible tense operator 
ought to  have an invariant tense for its meaning. Thus the re- 
striction to  invariant tenses is from an intuitive point of view no 
essential limitation at  all. 

The time structures that the first theorem considers are the 
dense linear orderings without endpoints. Let JCo be the class 
of these orderings. Let J0 be the class of all Xo-invariant tenses. 
I will construct, for an arbitrary set of predicate symbols and 
individual constants which contains at least one predicate symbol, 
a referentially complete interpretation Mz = (U, R, H, 0) for 
C,, o(N), relative to some member f7 of Xo, such that (i) if 
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caw 0 

then 
at  0; 

contains a sentence il satisfying the condition of Theorem 4 
there is a sentence y of Caw0(N) which is true in m only 
and (ii) every sentence of CaO, 0 is either true at  no point, 

or else a t  infinitely many. This will show that it is impossible to  
eliminate N from y in the sense of Theorem 2. 

For simplicity I will assume that Q contains only one element, 
the 1-place predicate letter Q:. It can be seen from the construc- 
tion below-and will be argued after the construction has been 
given-that this assumption is not essential. 

Let Q’= QU {ci : i E w } .  T will be equal to  T ’ U  {0}, where T’ 
is a set of rational numbers different from 0, m the quadruple 
(w ,  R, H, 0); for every t E T, R(Q:) (t) will be an infinite, coin- 
finite subset S i  of w,13 such that (a) for every t € T there are t’ < t 
and t” > t such that St.  n S, = S,.  n S ,  = 0; and (b) for every t E T, 
S,nSo#O. H will be a 1-1 function mapping each ci onto the 
(constant) function from T to {i}. In view of (a), (b) we have that 

(1) the sentence L(3vo)(Q:(vo) A NQ:(vo)) is true in m at 0 but 

Moreover, the sets S ,  for t E T’ will be defined in such a way that 

(2) each sentence of C3,,, 0 is true either a t  all t E T, or else at  no t. 

In order t o  describe the construction I will first make a few 
remarks on a certain kind of Boolean algebra, whose properties 
will play an important role in that construction, as well as in the 
argument which follows it. 

Let U be an infinite set and U a subset of p(U). For any finite 
subsets K, L of U let U(K, L) be the set of all members V of 
U such that K G  V and L n  V =  0. Let B(U, U) be the Boolean 
algebra generated by the sets U(K, L) under the operations of 
finite set theoretic union, intersection, and complementation 
relative to D(U).  One easily verifies that B(U, U) is generated by 
the sets of the forms U({u} ,  0) and U(0, {u}), and consequently 
that for every element V of B(U, 21) there is a number k B 1 and 
a function B such that Dom B = { 1, . . . , k} and for i = 1, . . . , k B j  

at no other moment. 

lS A subset K of w is coinfinite iff w - K is infinite. 
18 - Theoria 3: 1971 
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is a pair of finite subsets B:, B: of U and V=U!,, U(B:, B:). 
Such a function B will be called a representation of the element V. 
I will write U(B) for Uzs1 U(B:, Bq). 

Now let S be the set of all infinite, coinfinite subsets of w. 
Then, whenever K, L are finite subsets of w, and K n L = 0 then 
S(K, t) z 0; and thus every representation B such that for some 
i E Dom B, B: n B: = 0 represents an element of B(w, S) different 
from 0. Exactly the same properties hold for the algebra B(V, 79) 
where V is the set {yo,  vl, . . .} and 79 is the set of all infinite, coin- 
finite subsets of V. The algebras B(o, S) and B(V, 79) are of course 
isomorphic. In fact, let us understand by a perfect assignment a 
1 -1 function from V onto w. Then for any perfect assignment h 
and finite subsets K ,  L of V {h(W):  W€79(K, L)} = S(h(K),  h(L))- 
so that h induces an isomorphism between B(V, 79) and B(w, S). 
T' and the sets S ,  for t E T' are constructed as follows. Let Rat 

be the set of rational numbers, and let < be the natural ordering 
on Rat. Let {rijic0 be an enumeration of R a t - { 0 }  without 
repetitions. Let {.lk}Em be an enumeration of all pairs of mutually 
disjoint finite subsets of w. Let W be an enumeration of all pairs 
( i ,  - 1) and (i, + 1) and all triples ( i ,  j ,  k )  where i, j ,  k E w and 
i z j .  Let {E,} be an enumeration of all members of S. 

For n=O, 1, 2, ... construct a pair ( in ,  S,) consisting of a 
natural number i ,  and a member S ,  of S, and a subsequence W, 
of W as follows: 

(i) (io, So)  = (1, E,)  ; Wo = W. 
(ii) Suppose that for m S n  (i,, S,) and W, have been constructed. 

Let w be the first element of W, such that either 

(a) w =  ( i ,  + 1) and i = i ,  for some m sn; or 
(b) w=(i,-l)andi=i,forsomemSn; or 
(c) w = ( i ,  j ,  k ) ,  i = i, and j = i,. for some m, m' 5 n. 

(It will be clear from the construction that W, does indeed con- 
tain such an element w). In case (a) let in+l be the first natural 
number different from io, . . . , in such that is a rational num- 
ber > rim, and let Sn+l be the first member of {E,,}  different from 
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So, . . . , S, which is disjoint from S,. In case (b) let infl be the first 
number different from io, . . . , i, such that ri,+l is a negative ratio- 
nal number < rim; let Sn+l be as under (a). In case (c) let in+l be 
the first number different from io, . . . , i, such that is between 
rim and rim, and let Sn+l be the first member of {E.} different from 
So, . . . , S, which belongs to  S(Jk). In all cases (a), (b), (c) let W,+, 
be the sequence which we obtain when we eliminate w from W,. 
Let T= {rin: n E m }  U {0}, and let T= (T, <), where < is the nat- 
ural ordering of T. For t E T, t 20 let S t = S n ,  where t =rin;  and 
let So be a member of S which has a t  least one member in common 
with each S ,  where t E T, t z 0. We show that the interpretation 
(0, R, H, 0) has indeed the properties (1) and (2). That (1) holds is 
clear. It is somewhat less obvious that (2) is true. The next few 
pages will be concerned with showing that this is so. 

Let no, . . . , nk be a sequence of distinct natural numbers. For 
K c { v o ,  . .., v k }  we understand by ‘K(no, . .., nk)’ the set h(K), 
where h is any perfect assignment such that for i = 1, . . . , k, h(vi) = 
ni; for any representation B in the range of which occur only 
subsets of {yo,  ..., vk}  understand by B(no, .. ., nk) the function 
which assigns to  each i E Dom B the pair (B:(no, . . . , nk), Bt(no, 
. . . , nk)) ; for any formula y of CJa o’ all free variables of which are 
among vo, ..., vk, let y(no, ..., nk) be the formula [ y ]  cno/v0, ..., 
cnk/vk. For any sentence y of Caw o’ let T ( y )  be the set of all 
t E T such that [ y ]  z,: = 1. For any representation B of an element 
of B(w, S) let T(B) = {t E T: S ,  E S(B) } .  

It is a well-known fact of ordinary predicate logic with iden- 
tity that for every formula y there is a logically equivalent for- 
mula # satisfying the condition that 

(3) every subformula of y‘ which begins with a quantifier is 
either of the form 
(3vi )  ( - v i = v i l  A .  .. A - v i = v i ,  A y) or of the form 
(Vv,)  ( -vi  = vil A . . . A - v i  = )ti, + y), where vil, . . ., v i ,  are 
all the free variables of y. 

One easily verifies that this is also true for the languages C3,0 
and C,,(N), in the sense that for any formula y of C3,0 or 
C,.(N) there is a formula y’ satisfying condition (3) such that 
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q~ +-+ 
(3) I will call restricted. 

is X-valid (whatever X may be!). Formulae which satisfy 

I will show that 

(4) for each formula q~ of C3,a the free variables of which are 
among { vo, . . . , Yk} there is a representation B(9)  in the range 
of which occur only subsets of { vo, . . . , vk} such that for any 
choice of distinct natural numbers no, . . ., nk, T(g, (no, . . ., nk) 

else for each i E Dom B, B: n 84 = 0. 
= T(B(v)(no, ..., nk)); either B(v1 is {<l,<{vol, { Y ~ } ) ) } ,  or 

I will prove (4) by induction on the complexity of restricted 
formulae. In view of the equivalence of each formula with a re- 
stricted formula this will establish (4) for all formulae of Caw o'. 

If q~ is the formula qi put B(v)={( l ,  ( { v o } ,  { v , } ) ) } ;  i f v  is the 
formula vi = vi,  put B(v) = { (1, ({  v i } ,  S)), (2, (0, { v i } ) ) } ;  if p is the 
formula vi = v j ,  where i z j ,  put B(v) = { (1,  ( { y o } ,  { v , } ) )  }; if q~ is 
the formula Q:(vi) ,  put B(v) = {(l, ( { v i } ,  S))}. 

Suppose that v=C:(v1 . . . pin) and that for i =  1, . . ., n B(p) has 
been determined. Let el, . . ., e2. be all formulae of the form 
y1 A . . . A yn, where for i = 1, . . ., n yi is vi or yyi is -vi. It follows 
from our remarks on the Boolean algebras B(w, S)  and B(V, 79) 
that there are, for s = 1, . . . , 2", representations B ,  such that for 
any distinct natural numbers no, . . . , nk, T(e,(no, . . ., nk)) = T(B8 
(no, . . . , nk)). Thus for each s it is the case that either for all choices 
of distinct numbers no, . . ., nk T(e,(n, . . . , nk)) is empty, or else for 
all such choices T(e,(no, . . . , nk)) is dense in T. Moreover, the 
non-empty sets T(&(nO, ..., nk)) form, for any such choice, a 
partition of T. 

Now let t, t' E Tand let no, . . . , nk, and m,, . . . , mk be two choices 
of k distinct natural numbers such that for some s ~2~ t E T(e, 
(no, . . . . , nk)) and t' E T(@, (?no, . . . , mk)). Then ,by a simple general- 
ization of Cantor's argument, there is an order-automorphism g 
of 9 such that g(t)=t '  and for i = l ,  ..., n g(T(vi(no, ..., nk)))= 
g(vi(m0, . . ., mk)). Since J0(i) is {T} -invariant it follows that 

mk)). Let sl, . . . , s, be all those numbers s S2" such that for any 
distinct no, ..., nk, T(e,(no, ..., nJ) G T((C:(vl ... vn)) (no, ..., 

t E  T((cT(pl, v n ) )  ' - ' #  nk)) iff t' T((cr(vl ... v n ) )  lmO, * * * I  



FORMAL PROPERTIES OF ‘NOW’ 269 

n,)). Now let B(p) be a representation the range of which is the 
union of the ranges of Bsl, . . . , BSu. Then B(p) stands in the by (4) 
required relation to  p. 

Suppose that p is a formula beginning with an existential 
quantifier, of which all free variables are among Y,, ..., v,. For 
convenience let us assume that p is the formula 

(3vk+l)(NVk+l=Yoh ... h ‘ “ Y k + l = Y k h Y ) .  

Suppose first that B(y) = { (1, ({yo), { Y,)))}. Then for any choice 
of distinct no, . . ., nk, TZ,+~, T(y(no, . . ., nk, n,+l))=O. So ,T(p(no, 
. . . , n,)) = 0 for all distinct no, . . . , nk. So we may put B ( q )  = { (1, 
({Y,}, { v o b > ) .  Now suppose instead that B(Y)+ {<I,  ( { v o } ,  { v o ) ) ) } .  
Assume that Dom B(y) = { 1, . . . , p}. For each i I p  let C: = B :  - 
{ Y,+~), Cf = Bf - { Y&}. I claim that 

(5) for any choice of distinct no, . . . , n, 

To show (5) first suppose that t E T(p, (no, . . . , n,)). Then there is a 
number nk+l# no, . . ., n, such that t E T(y(no, . . ., nk, nk+l)}. So 
tES(B: (no ,  ..., n,, nk+l), B7(no, ..., n,, n,+l)) for some isp. So 

..., ~,)cS, and Cf(n,, . .., nk)nS,=O. So t E  UirDS(Cf(no, . .., 
n,), Ct(n, . .., nk)). Now suppose that t E S(C:(no, . .., n,), C7(no, 
. . . , n,)) for some i ~ p .  Since B: n Bf = 0, vk+l @ B: or Y,+~ CI B?. 
Suppose that v , + ~  B B:. Let nM1 be a number not in S ,  U {no, . . . , 
nk} (such a number exists as S ,  is coinfinite). Then B:(n,, . . . , f l k ,  

St E S(B:(no, . . . , nK, nk+3, @(no, . . . , nk, nk+l)). So t E TCyl (no, . . . , 

T(dn0, . . . , n,)) = U i i s  S(C:Cno, . * . I  n,), Cf(n0, . . . I  4. 

B:(no, . . ., f l k ,  ?Z,+l)ESt and @(?lo, . . ., nk, n,+l)n st=8. SO ci(n0, 

nk+l) = ci(n0, ..., fl,) and Bf(n0, ..., n,, nk+l) nst = 8. SO 

n,, nk+1)) c T(p,(no, . . . , n,)). The case where Y,+~ B B4 is treated 
similarly. Now let B(p)= {(i, (C:, Cf): i =  1, ..., p). Then B(q)  
stands in the required relation to  p. This completes the proof 
of (5). The case where p, begins with a universal, rather than an 
existential, quantifier is treated in exactly the same way. This 
completes the proof of (4). 

Every set T(B(p,) (no, . . . , n,)) is either empty or else dense in 
it follows from (4) that this is true also of the set of all t E T where 
a given sentence of C30,0’ is true in m. In particular, since for 
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every pair of disjoint finite subsets K, L of { y o ,  . . . , v k }  and every 
t E T there are distinct numbers no, . . . , nk such that S ,  E S(K(no, 
. . ., nk), L(n,, . . ., nk)) a sentence of Go, will either be true in m 
at all t ,  or else false at all t. 

The assumption, made earlier, that Qf contains only the predi- 
cate letter Qi,  can be considerably weakened. In fact, all we have 
to  assume about Q is that it contains a t  least one predicate letter, 
of one or more places. That this assumption suffices can be seen 
as follows. Let us first assume that Q contains only predicate 
symbols. For any predicate letter Q ;  E Q let the interpretation 
R(Q;) in the constructed interpretation m be defined by R(Q;)(t) 
= {(m,, . . ., m,) : m, ES, and mo=ml=.  . . = m n } .  Then clearly 
the sentence L(3v0) (Q;(vo . . . v,) A NQ;(v, . . . yo)) is true only at 0. 
Associate with every formula Q;(vil ... pi,)( where for some r, 
s s n ,  vi,# via, the representation {(l, ( { v , } ,  { v , } ) ) }  and with 
every formula Q;(vi . . . v i )  the representation { (1, ( { v i } ,  S))}. 
One easily verifies that in either case the representation stands in 
the by (4) required relation to  the formula. This, together with 
the inductive steps proved above, establishes that (4) holds for 
all formulae of CJ,,, so that sentences of C3,, a' are again either 
true nowhere or else at a set of moments which is dense in 'J. 

Now suppose that Q contains individual constants as well. Let 
c8 be one of those. Let 'J be as before. The interpretation m will 
now have the form (o U {w} ,  R, H', O), where R(Q;) is defined as 
before; R(c8) ( t )  = o for all c. E Q and t E T; and H' is a 1 - 1 func- 
tion from a set of constants not in Q onto the set of constant 
functions from T into o U {o}. We can again prove (4) by induc- 
tion, now restricting attention to  formulae in which every sub- 
formula beginning with @vi)  or ( V v i )  is of the form @pi) ( - v i  = 

vik A - v1 = Cg --+ y), respectively; and associating with every 
atomic formula Ql(p,, . . . , p,), where a t  least one pi is a constant 
in Q, the representation ((1,  ( { v , } ,  { y o } ) ) } .  

Yil A . . . A * V i = V i k  A - V i = C # A  'I#), Or ( V l i )  ( * Y i = P i l  A , . . A 

The above results can be summarized in the following 

THEOREM 6.  Let X be a class of partial orderings which contains 
at least one dense linear ordering without endpoints. Let 3 be an 
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indexed family of tenses which are X-invariant. Let Q be any set of 
predicate letters and individual constants which contains at least one 
predicate letter. Then there is a sentence y of C3, a(N) such that for 
no sentence p of C3, a is y t) p X-valid. 

The second theorem of this section is concerned with discrete 
orderings. I will construct an interpretation relative to  the integers 
(regarded as a linearly ordered structure) in which again a sentence 
containing N is true only a t  0, while all sentences not containing 
N will be true either nowhere or else at arbitrarily large positive 
and negative integers. This result will not be as general as Theo- 
rem 6, however, since it will only apply to languages C1,a and 
C1,a(N). For the construction I will assume that Q={Q:} .  As in 
the previous proof this assumption can be weakened to  the 
hypothesis that Q contains at  least one predicate letter. 

Let T’ be the set of all integers different from 0, and let T =  
T‘U {O}. The interpretation m will again be of the form (0, R, 
H, 0), where His  as before and R(Q:) ( t )  is a member St of S. I will 
now describe the construction of the S,. The idea is to  construct 
successively Sl, S-, S2, S-2, etc., and finally So. Let { E a } a < p  and 
{.lk}k<m be the enumerations used in the previous proof. Let 
{ i , } , < ,  be the enumeration of the integers different from 0 which 
starts with 1, -1, 2, -2,.. . and continues in the obvious way. 
Let W be an enumeration of all pairs (i, - 1) and ( i ,  + l), where 
i is an integerz0, and all pairs (k, -2) and (k, +2), where k 
is a natural number. I construct for n =0, 1, 2, . . . infinite, coin- 
finite subsets s‘, of o and subsequences W, of W as follows: 
(1) Let SI0 = Eo, Wo = W. 
(2) Suppose that S’,, W, have been constructed for m d n .  (a) 
Suppose that in+l is positive. Let w be the first member of W, 
such that either w = ( i ,  + 1) and i = i ,  for some m Sn;  or w = 

(12, + 2). If w =  ( i ,  + 1) let S’n+l be the first E. not yet used which 
is disjoint from Sk; if w = (k, + 2) let S‘n+l be the first E a  not yet 
used which belongs to  S(Jk). (b) Suppose that in+l is negative. 
Let w be the first member of W, such that either w = ( i ,  - 1) and 
i = i ,  for some m d n ;  or w = ( k ,  - 2 ) ;  if w = ( i ,  -1) let S’n+l be 
the first E a  not yet used which is disjoint from S‘,; if w = ( k ,  - 2 )  
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let S‘,+, be the first E .  not yet used which belongs to  S(J,). In 
each of the cases under (a) and (b) let W,,, be the sequence which 
results if we omit w from W,. Let, for each t E T‘, S ,  =S‘, ,  where 
t = in.  Let So be an infinite, coinfinite subset of o which contains 
an element from each S ,  such that t E T’. One easily verifies that 
(i) for each t E T’ there are t’ < t and t” > t such that S,.n S ,  = 

Sp n S ,  = 0; and (ii) for any disjoint finite subsets K, L of o and 
t E T there are t’ < t and t” > t such that S,. and S,.. belong to  
S(K, L). From (i) follows that the sentence L(3vo)(Q:(vo) A NQ: 
(yo) )  is true in m only at  0. (ii) enables us to prove that condition 
(4) holds (for formulae of C,, o). Again the proof is by induction on 
restricted formulae. It proceeds along the same lines as the argu- 
ment given above, the only difference being that the inductive 
step where Q] is of the form C?(Q], . . . Q],) is now replaced by the 
two special cases where Q] is Gy or Hy. I will consider the case 
where Q] is Gy. Suppose that Q] is Gy and that B(y) has been de- 
fined. If W(B(y)) consists of all infinite, coinfinite subsets of V 
then for every choice of distinct natural numbers no, . . . , nk (where 
I assume that all sets which occur in the range of B(y) are included 
in {vo, . . . , Y,}), and every t E T y(no, . . . , n,) is true at t. So Gy 
(no, . . ., nk) is true a t  all t, and we may therefore put B(Q]) = {(l, 
(0, S))}. Now suppose that W(B(y)) does not consist of all infinite, 
coinfinite sets of variables. Then, by our remarks on the Boolean 
algebras B(w, S) and B(V, 8) there are finite sets K, L of variables 
such that b(K,  L) n W(B(y)) = 0. Let t be a member of T ,  no, . . . , n ,  
distinct natural numbers. By (ii) there is for every t E T a t‘ > t 
such that S,. E S(K(no, . . ., n,), L(no, . . . , n,)). Therefore y(no, . . ., 
n,) is not true at t. Thus for each choice of distinct no, . . . , nk and 
each t E T y(no, . . . , n,) is false at t. Thus we may put B(Q]) = 

{(I, < b O L  b o ) ) ) } .  
The above argument yields the following 

THEOREM 7 .  Let Q be a set of predicate letters and individual con- 
stants which contains at least one predicate letter, and let JC be a class 
of partial orderings which contains at least one ordering which is 
isomorphic with the integers. Then there are sentences y of Cl, ,(N) 
such that for no sentence y of C1, is y ++ Q] X-valid. 
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