
Event semantics
EGG 2024 in Braşov
Deniz Özyıldız, Universität Konstanz
https://deniz.fr/summers/egg2024/

3. Introducing events

Exercise from yesterday

(42) vP
λe.butter(e)∧ theme(e) = t ∧ agent(e) = j

DP

agent DP

Jones
j

VP
λe.butter(e)∧ theme(e) = t

V

butter
λe.butter(e)

DP

theme DP

the toast
t

Exercises (+ solutions):

• Define theme and agent.

Two equally valid options came up:

VP
λe.butter(e)∧ theme(e) = t
via Function Application

V

butter
λe.butter(e)

DP
λf⟨v,t⟩λev .f (e)∧ theme(e) = t

via Function Application

theme

λxeλf⟨v,t⟩λev .f (e)∧ theme(e) = x
DP

the toast
t

OR

1

https://deniz.fr/summers/egg2024/


VP
λe.butter(e)∧ theme(e) = t

via Predicate Modification

V

butter
λe.butter(e)

DP
λev .theme(e) = t

via Function Application

theme

λxeλev .theme(e) = x
DP

the toast
t

Notice the similarity with our discussion of treating adverbs as verb → verb func-
tions vs. intersective modifiers. The second option is more in keeping with our de-
cision to settle on intersective modification for event semantics.

• There are alternatives to free floating thematic heads in the syntax.

Can you think of any?

One could imagine operating on the meaning of the verb instead of the meaning of
nominal arguments.

theme-shift⇝ λf⟨v,t⟩λxeλev .f (e)∧ theme(e) = x

VP
λe.butter(e)∧ theme(e) = t
via Function Application

V
theme-shift(butter)

λxeλev .butter(e)∧ theme(e) = x

V
butter

λe.butter(e)

DP

the toast
t

Disclaimer: My intention here was to draw an analogy between this operation and
type shifting (Partee 1987, Heim & Kratzer 1998: ch. 7).

But the analogy isn’t perfect, and we should think of the difference between this and
the last bullet point as: Should we manipulate DP denotations or V(P) denotations
in introducing thematic role information.

Pending empirical or other kinds of evidence, the two options seem equally valid.

2



✧

Type shifting refers to operations that change the type of an expression silently and
in situ to help them compose with surrounding expressions when they otherwise
couldn’t have.

Clasically, at least, type shifting doesn’t add accidental information, like theme(e) = x.

A famous example case that requires type shifting might be:

(i) Kajsa and every Turk rejoiced.
a. Kajsa⇝ k to be shifted
b. every Turk⇝ λP⟨e,t⟩.∀x : turk(x)→ P (x)

Problem! We can’t conjoin something of type e with something of type ⟨⟨e, t⟩, t⟩. And
there is no (easy) way of construing every Turk as anything of type e.

We settle on the following definition for ‘and,’ which ‘Kajsa’ won’t fit into.

(ii) and⟨⟨e,t⟩,t⟩⇝ λP⟨⟨e,t⟩,⟩λQ⟨⟨e,t⟩,t⟩λf⟨e,t⟩.P (f )∧Q(f )

Solution: “Lift” the type of Kajsa so that it becomes something of type ⟨⟨e, t⟩, t⟩.

(iii) lift(Kajsa)⇝ λR⟨e,t⟩.R(k)
The set of properties of type ⟨e, t⟩ that Kajsa satisfies.

The following structure should now be interpretable. Compute the denotation of VP.
Focus on the intermediate steps and don’t take shortcuts. (Events are not involved.)

VP

DP

lift(Kajsa)

Kajsa

&P

and every Turk

V
rejoiced

λxe.rejoice(x)

3



3.4. Champollion (2015)

3.4.1. Preliminaries

Existential closure Above, we’ve been moving freely between predicates of events, like
λe.run(e, j), and existential statements, like ∃e : run(e, j).
In one tradition, that existential quantifier is introduced in the syntax by grammatical
aspect (on which, more later).
A simplification that doesn’t introduce the details of aspect is (51):

(51) AspP
∃e : butter(e)∧ theme(e) = t ∧ agent(e) = j

ex-clo

λP⟨v,t⟩.∃e : P (e)
vP

λe.butter(e)∧ theme(e) = t ∧ agent(e) = j

DP

agent DP

Jones
j

VP
λe.butter(e)∧ theme(e) = t

V

butter
λe.butter(e)

DP

theme DP

the toast
t

Introducing negation Assume the following definition for negation, of type ⟨t, t⟩:

(52) not⇝ λpt.¬p

There is only one node in the tree above that has an expression of type t: AspP. That is
then the only place that we can introduce negation. That yields (53).

4



(53) NegP
¬∃e : butter(e)∧ theme(e) = t ∧ agent(e) = j

not
λpt.¬p

AspP
∃e : butter(e)∧ theme(e) = t ∧ agent(e) = j

ex-clo

λP⟨v,t⟩.∃e : P (e)
vP

λe.butter(e)∧ theme(e) = t ∧ agent(e) = j

Jones buttered the toast

This is good. When we say (54a), what we mean is that no event of buttering the toast
took place, which is what (54b) says.

(54) a. Jones didn’t butter the toast.
b. ¬∃e : butter(e)∧ theme(e) = t ∧ agent(e) = j :)

An alternative would have been to have ¬ scope below ∃e. These truth conditions are too
weak, made true by almost any event.

(55) ∃e : ¬[butter(e)∧ theme(e) = t ∧ agent(e) = j] can’t derive⇒ :)

But, given classical negation, we can’t derive these truth conditions anyway.

Introducing quantifier phrases In one tradition, quantifier phrases are analyzed as ex-
pressions of type ⟨⟨e, t⟩, t⟩.

(56) Illustration in a system sans events

VP
∀x : swede(x)→ run(x)

DP
λQ⟨e,t⟩.∀x : swede(x)→Q(x)

every Swede

V
λxe.run(x)

ran

We can try to insert “Every Swede” in a tree that incorporates events. . . But that’ll give
rise to a type mismatch.

5



(57) AspP
A

ex-clo

λP⟨v,t⟩.∃e : P (e)
vP
A

DP
A

agent

λxeλev .agent(e) = x
DP

λQ⟨e,t⟩.∀x : swede(x)→Q(x)

Every Swede

V
λe.run(e)

ran

Except that we know how to handle this precise kind of type mismatch: Quantifier Rais-
ing (again, in one tradition).

(58) ΛP
∀x : swede(x)→ [∃e : run(e)∧ agent(e) = x]

DP
λQ⟨e,t⟩.∀x : swede(x)→Q(x)

Every Swede

ΛP
λy.∃e : run(e)∧ agent(e) = y

λy AspP
∃e : run(e)∧ agent(e) = y

ex-clo

λP⟨v,t⟩.∃e : P (e)
vP

λev .run(e)∧ agent(e) = y

DP
λev .agent(e) = y

agent

λxeλev .agent(e) = x
DP
y

V
λe.run(e)

ran

Here again, these truth conditions, in (59b), approximate well the meaning of a sentence
like (59a): For every Swede, there is a different run that they’re the agent of.

(59) a. Every Swede ran.
b. ∀x : swede(x)→ [∃e : run(e)∧ agent(e) = x] :)

6



And again, an alternative would have been to swap the scope of ∀x and ∃e, as in (60):

(60) ∃e : ∀x : swede(x)→ [run(e)∧ agent(e) = x] can’t derive⇒ :)

This is problematic at least in two places: There’s at least one event that is a run (problem
#1) and whose single agent is every Swede (problem #2).
But because Quantifier Raising can only target a node of type t, and the only such avail-
able node is above ex-clo, we don’t have the option of deriving this scope configuration.

Introducing conjunction Assume that ‘party’ and ‘exercise’ are both neo-Davidsonian
event predicates, in (61).

(61) a. exercises⇝ λev .exercise(e)
b. parties⇝ λev .party(e)

How would you define “and,” as it’s used in (62)?

(62) Chiara parties and exercises.

Try to keep minimal silent material that you assume.

3.4.2. Transition

The assumptions of system presented above (ex-clo, its position, ⟨⟨e, t⟩, t⟩QPs, quantifier
raising) are but some among many different world views.

With even slightly different assumptions, it is possible to generate (unwanted) truth con-
ditions like:

(63) a. Jones didn’t butter the toast.
b. ∃e : ¬[butter(e)∧ theme(e) = t ∧ agent(e) = j]

(64) a. Every Swede ran.
b. ∃e : ∀x : swede(x)→ [run(e)∧ agent(e) = x]

✧

Even with the assumptions that we were making, we will run into problems at some
point:

(65) Katia didn’t work for two hours.
a. It wasn’t the case that Katia worked for two hours.
b. For two hours, it wasn’t the case that Katia worked.

Let’s define “for two hours” as follows:

(66) for two hours⇝ λev .τhours(e) = 2

Becaues this is an event predicate, it’s possible to introduce it below ex-clo, so long as an
event variable is open:

7



(67) It wasn’t the case that Katia worked for two hours.

NegP
¬∃e.work(e)∧ agent(e)∧ τhours(e) = 2

Neg
λpt.¬p

AspP
∃e.work(e)∧ agent(e)∧ τhours(e) = 2

ex-clo

λP⟨v,t⟩.∃e : P (e)
vP

λe.work(e)∧ agent(e)∧ τhours(e) = 2

for 2 hours
λev .τhours(e) = 2

vP
λe.work(e)∧ agent(e) = k

Katia worked

(68) For two hours, it wasn’t the case that Katia worked. (unsuccessful attempt)

NegP
A

for 2 hours
λe.τhours(e) = 2

NegP
¬∃e.work(e)∧ agent(e)∧ τhours(e) = 2

Neg
λpt.¬p

AspP
∃e.work(e)∧ agent(e)∧ τhours(e) = 2

ex-clo

λP⟨v,t⟩.∃e : P (e)
vP

λe.work(e)∧ agent(e) = k

Katia worked

In light of examples like this. . . one is tempted to change our assumptions about, e.g.,
negation (Krifka 1989).

8


	Introducing events
	Champollion (2015)
	Preliminaries
	Transition
	Champollion's project



